
Continuous Time Recurrent Neural Networks forGrammatical InductionJoseph ChenComputer Science Department, University of HamburgVogt-K�olln-Stra�e 30, D-22527 Hamburg, Germanyjoseph@nats.informatik.uni-hamburg.deStefan WermterSchool of Computing & Information SystemsUniversity of SunderlandSt Peter's Way, Sunderland SR6 0DD, United Kingdomstefan.wermter@sunderland.ac.ukAbstractIn this paper we explore continuous time recurrent networks for gram-matical induction. A higher-level generating/processing scheme can beused to tackle the grammar induction problem. Experiments are per-formed on several types of grammars, including a family of languagesknown as Tomita languages and a context-free language.The system andthe experiments demonstrate that continuous time recurrent networkscan learn certain grammatical induction tasks.1 IntroductionRecently research has paid a lot of attention to the development of a connec-tionist framework for natural language processing [1, 2, 3, 4, 5, 6]. However,these approaches are often based on discrete time neural networks. In contrastwe suggest that a continuous time recurrent network with time delay { CTRN[7, 8], equipped with rich temporal dynamics, is suitable for such tasks.A discrete time network encodes the information in discrete time and nointernal states exist in between two ticks. We believe this is a shortcoming whenapplying discrete time networks to highly structured processing. In contrast, acontinuous time neural network can \wrap" the internal structure of a symbolicsequence in continuous time.Grammar induction is the problem to learn to classify whether a sequence ofsymbols should be accepted or rejected according to a speci�c grammar, givena �nite set of positive and negative training examples. In this paper, we focus



on a set of regular languages known as Tomita languages [9] and a context-freelanguage de�ned on f0; 1g�. For examining this continuous approach, we showthat a higher level connectionist processing module together with a continuoustime recurrent network is able to perform some grammatical induction tasks.2 Continuous Time Recurrent NeuralNetworksA continuous time recurrent neural network (CTRN) [7, 8] consists of n neurons,each of which is connected with the other neurons with a time delay and whoseactivation evolves continuously in time. For the i-th neuron, the activation yican be modeled by the following equation:ki dyidt = �yi + �0@Xj wijyj (t� �ij)� �i1Awhere t is time; �(�) is a sigmoidal function; wij is the connection weight fromthe j -th neuron to the i-th neuron; �ij is the time delay from the j -th neuronto the i-th neuron; ki is the time constant associated with the i-th neuron. Thesigmoidal function is, tanh(x) = e�x � e��xe�x + e��xwhere � is a shaping constant. Since the range of tanh(�) is (�1; 1), the ac-tivation of each neuron in this network is con�ned to (�1; 1). Now we cantake a snapshot at each time t=integer, and choose a symbol mapping functionS : (�1; 1)n ! �, where � is a �nite set of symbols. Along the evolution ofthe system, a symbolic sequence is generated. In fact, a CTRN is a dynamicalsystem, which could have very rich dynamics. Notice that the activation space(�1; 1)n can be partitioned into a �nite number of symbol-partitions throughS, each of which corresponds to a unique symbol in �.3 Higher Level Connectionist Processing ofCTRNHere we propose an architecture which exploits the rich dynamics of a CTRNusing a generator-processor scheme.That is, at �rst the input symbol sequence isfed in a CTRN sequentially and the CTRN is trained independently to faithfullyreproduce the input symbol sequence. The output of the generator is thenormalized network parameter vector (that is, the normalized concatenationof weights, delays, thresholds, and time constants) of the CTRN with respectto a speci�c input sequence. Then the output of the CTRN can be subject tofurther connectionist processing.



3.1 CTRN GeneratorFirst, the neurons in the CTRN are assigned the activation of +1. Then, theCTRN is set free to evolve once the input sequence has been given. The param-eters of the CTRN are adjusted in such a way that a minimal di�erence betweenthe output of the CTRN and the input sequence can be achieved. Speci�cally,given a sequence of input vector activations, each of which corresponds to asymbol in �, the training goal is to minimize,E(~p) = nXr=1 Z T0 (or(t)� ir(t))2 dtwhere ~p is a point in the parameter domain; n is the dimension of the CTRN; Tis the length of the input sequence; or(t) is the output of the CTRN, and ir(t)is the given input sequence. Our sampling is done by extracting the activationstates whenever t is integer and ignore the intermediate states. That is,E(~p) = nXr=1 Z T0 ((or(t)� ir(t)) � sw(t))2 dtwhere sw(t) is a windowing-function with the observation window width w,sw(t) = � 1 if jt� floor(t)j � w0 otherwise:where floor(t) is the largest integer less than or equal to t. The evolution ofa CTRN can be numerically depicted with the Runge-Kutta algorithm. Sinceeach parameter in a CTRN can have a di�erent upper and lower bound andthe evolution of the dynamic system is continuous, the training of a CTRNis di�cult using gradient descend algorithms. Therefore, we use the \Adap-tive Simulated Annealing" (ASA) algorithm [10, 8] to train CTRN. For furtherdetails of ASA, see Ingber 1989[10]. In our implementation, we linearly nor-malize the output parameter vector according to pre-speci�ed bounds of searchspace for each parameter. Using this scheme, we can compress a sequence ofan arbitrary length to a �xed dimensional activation.3.2 Higher Level Grammaticality ProcessorIn our preliminary experiment, we use a feedforward[11] network to identifywhether a given input sequence should be rejected or accepted by a speci�cgrammar. The architecture is illustrated in �gure 1.In this architecture, the representation of a given sequence is a parametervector of the sequence with which the CTRN traverses each symbol-partitionof the symbols in the sequence. The output of the feedforward network is thedecision whether the sequence is grammatical or not.



Continuous Time
Recurrent Network

Source Sequence

Target Sequence
=Source Sequence

Parameter Vector
= w k⊕ ⊕ ⊕τ θ

Accepted-> <-Rejected

Feedforward
Network

1st
symb.

n-th
symb.

Stop 
symb. Figure 1: CTRN Grammaticality Checker.4 ExperimentsTomita languages are a set of �nite state languages over 0,1* proposed byTomita [9] which were selected as benchmark problems by many researchers.Theseven regular languages are,L1. 1*L2. (10)*L3. no odd-length 0-string anywhere after an odd-length 1-stringL4. no more than two 0s in a rowL5. bit pairs, #01s + #10s = 0 mod 2L6. abs(#1s-#0s) = 0 mod 3L7. 0*1*0*1*Additionally, we tested our setup on a context-free grammar on f0; 1g� {1n0n (labeled as CF below).In our experiment, we generated each of the languages up to length 5 (62sequences). Since CTRN encoding is a stochastic (non-deterministic) process,each sequence is presented to the CTRN ten times to construct a reservoir ofparameter vectors. That is, there are totally 620 parameter vectors. These62 sequences were then labeled as \accepted" or \rejected" according to eachlanguage. In one of the experiments, these vectors were divided into 70%(training set) and 30% (labeled as \Test1" below). In another experiment setup,the training set contains all the patterns of length up to 4 (30 sequences), andthe test set consists of the sequences of length 5 (32 sequences). This setup islabeled as \Test2" below.The activation representation for symbol \1" is < 1;�1;�1 >, and for \0"



is< �1; 1;�1 >. An additional activation for the stop symbol is< �1;�1; 1 >.The value +1 denotes an activation of the neuron and -1, deactivation. Thesearch space of parameters is chosen as Wij 2 [�10; 10], ki 2 [0:2; 5], �ij 2[0:0; 5], �i 2 [�10; 10] . The shaping constant of the sigmoidal function � is 1:5.The observation window is 0:2.The feedforward network (FF) is trained with conjugate gradient method[12]. The number of hidden units in the FF is chosen incrementally until allpatterns in the training set can be learned successfully.A typical experiment result is summarized in table 1. The base for theaccuracy is the collection of all parameter vectors of a sequence. That is, if theaccuracy is less than 100%, some parameter vectors associated with a speci�csequence are not classi�ed correctly. For example, in our �rst experiment setup(Test1), there are only three sequences (2 in L6, 1 in CF) whose parametervectors (all ten) are classi�ed incorrectly in the 70%-30% con�guration.To examine the incorrectly classi�ed sequence further, we setup a \voting"process. That is, if more than half of the tested parameter vectors for a sequenceare classi�ed incorrectly, we label it as \incorrect", otherwise, we label it as\correct." This accuracy is shown in table 1 under the label \voting."Upon examining the poorer performance of CTRN-FF classi�er (on L5,L6,and L7), we found that all three languages are actually quite \di�cult" forhuman subjects as well, especially when the number of training examples isnot very large. However, various other grammars can be learned perfectly anddo generalization quite well.Lang. # H. Training Test1 Test1 # H. Test2 Test2Units (Plain) (Voting) Units (Plain) (Voting)L1 1 100% 91.42% 96.43% 1 84.69% 90.62%L2 1 100% 100.00% 100.00% 2 88.13% 100.00%L3 3 100% 96.51% 100.00% 3 89.69% 100.00%L4 8 100% 100.00% 100.00% 2 63.44% 56.25%L5 9 100% 45.00% 43.75% 8 53.13% 40.63%L6 8 100% 45.21% 60.87% 6 51.88% 56.25%L7 4 100% 76.87% 87.50% 1 79.06% 81.25%CF 2 100% 92.94% 94.11% 3 88.75% 96.88%Table 1: A Typical Result of CTRN-FF Language Induction.5 Discussion and ConclusionOur underlying motivation in the CTRN architecture was that a CTRN can en-code/generate a compressed and �xed dimensional representation of sequences.We expect that if the sequences have some systematic internal structure (e.g. allare grammatical according to a speci�c grammar), their corresponding parame-ter vectors in a CTRN should also have some kind of systematic characteristics.



It would be interesting to compare a CTRN architecture with a discrete timerecurrent network, e.g. recurrent auto-associative memory (RAAM) [13]. Incontrast to RAAM, whose \systematic" encoding/decoding ability relies solelyon the inter-connection weights and has a �rst-in-last-out decoding scheme,CTRN uses additional parameters (time delay and time constant) in encodinga sequence and puts the results in another connectionist module. The gener-ation phase in a CTRN is not reversed as in a RAAM but in a phenomenallyleft to right forward manner. The learning of a RAAM is carried out by themechanism of the network itself (adjusting its weights in a distributive man-ner.) In contrast, the training in a CTRN can be guided and mediated by otherconnectionist modules.References[1] S. Wermter and J. Chen, \Cautious steps towards hybrid connectionist bilin-gual phrase alignment," in Recent Advances in Natural Language Processing 97(RANLP97) (R. Mitkov, ed.), (Tsigov Chark, Bulgaria), 1997.[2] S. Wermter, Hybrid Connectionist Natural Language Processing. Chapman &Hall Neural Computing Series, London: Chapman & Hall, 1995.[3] J. Elman, \Finding structure in time," Cognitive Science, vol. 14, pp. 179{211,1990.[4] D. Chalmers, \Syntactic transformations on distributed representations," Con-nection Science, vol. 2, no. 1&2, pp. 53{62, 1990.[5] M. F. S. John and J. L. McClelland, \Learning and applying contextual con-straints in sentence comprehension," Arti�cial Intelligence, vol. 46, pp. 217{257,1990.[6] L. Niklasson and T. van Gelder, \Can connectionist models exhibit non-classicalstructure sensitivity?," in Proceedings of the 16th Annual Conference of the Cog-nitive Science Society, 1994.[7] B. A. Pearlmutter, \Gradient calculations for dynamic recurrent neural networks:A survey," IEEE Trans. on Neural Networks, vol. 6, no. 5, pp. 1212{1228, 1995.[8] B. Cohen, D. Saad, and E. Marom, \E�cient training of recurrent neural networkwith time delays," Neural Networks, vol. 10, no. 1, 1997.[9] M. Tomita, \Dynamic construction of �nite automata from exapmles using hill-climbing," in Proceedings of Fourth Int. Cog. Sci. Conf., pp. 106{108, 1982.[10] L. Ingber, \Very fast simulated re-annealing," Mathematical and ComputationalModeling, vol. 12, pp. 967{973, 1989.[11] D. E. Rumelhart, G. Hinton, and R. Williams, \Learning internal representationsby error propagation," in Parallel Distributed Processing (Rumelhart, D. E.,McClelland, and J. L., eds.), vol. 1, Foundation, pp. 318{362, MIT Press, 1986.[12] B. Kalman and S. C. Kwasny, \Trainrec: A system for training feedforward &simple recurrent networks e�cently and correctly," Technical Report, Washing-ton University, May 1993.[13] J. B. Pollack, \Recursive distributed representations," Arti�cial Intelligence,vol. 46, pp. 77{105, 1990.


