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Abstract

This paper describes multidimensional neural
preference classes and preference Moore ma-
chines as a principle for integrating di�erent
neural and/or symbolic knowledge sources. We
relate neural preferences to multidimensional
fuzzy set representations. Furthermore, we in-
troduce neural preference Moore machines and
relate traditional symbolic transducers with
simple recurrent networks by using neural pref-
erence Moore machines. Finally, we demon-
strate how the concepts of preference classes
and preference Moore machines can be used
to integrate knowledge from di�erent neural
and/or symbolic machines. We argue that our
new concepts for preference Moore machines
contribute a new potential approach towards
general principles of neural symbolic integra-
tion.

1 Introduction

In previous years there has been a fair amount of in-
terest in hybrid and connectionist systems, that is, in
systems which integrate symbolic, neural and/or stat-
istical knowledge for solving di�cult real-world tasks
[Reilly and Sharkey, 1992; Miikkulainen, 1993; Yager,
1994; Medsker, 1995; Dor�ner, 1997; Cleeremans and
Destrebecqz, 1997]. Much work on hybrid systems has
been guided by the particular tasks at hand [Dyer, 1991;
Honavar and Uhr, 1994; Sun and Bookman, 1995] and
only little work has concentrated towards more general
rigorous models of neural interpretation (for an early
exception see [Smolensky, 1988; Sharkey and Jackson,
1995]). This lack of fundamental principles of hybrid
neural/symbolic integration was also identi�ed at a re-
cent international workshop on hybrid intelligent sys-
tems [Wermter and Sun, 1998] and this paper addresses
this current issue.
In this paper we want to start with focusing on the in-
tegration of simple symbolic machines, fuzzy representa-
tions and recurrent neural networks. First, we introduce
the general concept of multidimensional neural prefer-
ences. Then, we relate multidimensional neural pref-

erences to multidimensional fuzzy set representations
and show that the corner preference order on preference
classes is a partial order. This allows us to rank di�er-
ent neural preferences and provides a basic link between
neural preferences and symbolic fuzzy representations at
the preference class level.
Then, we introduce neural preference Moore machines
and relate traditional symbolic transducers with simple
recurrent networks by using neural preference Moore
machines. Preference Moore machines provide a link
between simple recurrent networks and symbolic trans-
ducers at the preference Moore machine level.
Finally, we demonstrate how the concepts of preference
classes and preference Moore machines can be used to in-
tegrate knowledge from di�erent neural and/or symbolic
machines. We introduce operations like intersection and
union on preference classes and show that these opera-
tions on preference classes are commutative, associative,
and monotonic. These operations provide a link between
several neural or symbolic modules at the system archi-

tecture level.

2 Neural Preferences, their Order, and
their Preference Value

Typically, arti�cial neural networks receive analogous in-
put from a number of network units (input layer) and
they produce output for a number of network units (out-
put layer). While the actual processing within di�erent
networks may be very di�erent, their external interface
may be modeled by a general multidimensional prefer-
ence for input and/or output.

De�nition 1 (Preference) A preference is an analog

representation which is represented by an m-dimensional

vector p 2 [0; 1]m.

De�nition 2 (Preference Mapping)
A preference mapping is a mapping between preferences:

[0; 1]n ! [0; 1]m, with n, m positive integers.

Such a preference mapping could be a transformation
of the input or a prediction of the next input based on
the current input. If we want to rank preferences ac-
cording to their strength, we need to specify an order
for m-dimensional preferences in [0; 1]m. Within this m-
dimensional space, we will consider a preference as being



large if the values of the individual vector elements are
close to 1 or 0. In contrast, we will consider a prefer-
ence as being small if the values of the individual vector
elements are close to 0:5. This is our goal criterion for
determining a partial order on preferences. In general,
we de�ne a preference a as being larger than another
preference b, if a has a smaller distance to a reference.

De�nition 3 (Reference Order)
Let a = (a1; � � � ; am), b = (b1; � � � ; bm) be two m-

dimensional preferences and a reference r = (r1; � � � ; rm)
from [0; 1]m. Then the reference order �r is de�ned

as: (a1; � � � ; am) �r (b1; � � � ; bm), if jr � aj � jr � bj.
Here � is the usual order on real numbers and jr �
aj =

p
(r1 � a1)2 + � � �+ (rm � am)2 is the Euclidean

distance of the preference a to the reference r.

It is possible to determine multiple references, for in-
stance, the corner references from f0; 1gn. These corner
references are particularly interesting since they allow
a direct symbolic interpretation of preferences for input
and output.

De�nition 4 (Corner Reference Order) If r is a

corner reference r = (r1; � � � ; rm) 2 f0; 1gm, then the

reference order �r is based on the distance of two pref-

erences from this corner reference. We call this special

form of the reference order the corner reference order.

That is, referring to a corner reference r, a preference a
is greater than or equal to a preference b, if the distance
of a to r is smaller than or equal to the distance of b to r.
The corner reference can be interpreted as a strict, sharp
preference. Below, we will specify that r(a) is the next
corner reference with minimal distance to a currently
considered preference a. We de�ne in detail:

De�nition 5 (Next Corner Reference) The

next corner reference r(a) 2 f0; 1gm, which is closest

to a 2 [0; 1]m, is determined for i 2 f1; � � � ;mg as:

r(a)i = 0; if ai < 0:5

r(a)i = 1; if ai � 0:5

We consider an example: (0:9 0:1) and (0:6 0:4) are com-
parable and (0:9 0:1) �r (0:6 0:4), because (0:9 0:1) is
closer to the next corner reference (1 0) than (0:6 0:4) to
(1 0). Furthermore, it holds that: (0:9 0:8) �r (0:5 0:6),
because the distance of (0:9 0:8) to (1 1) is smaller than
the distance of (0:5 0:6) to a corner reference. The closer
a preference is to a corner reference, the greater the pref-
erence. This can be de�ned more formally by assigning
a preference value from the interval [0; 1] to each pref-
erence a related to its next corner reference r in the
m-dimensional space:

De�nition 6 (Preference Value of a Preference)
Let r(a) be the next corner reference for a preference

a in m-dimensional space. Let distance(a; r(a)) be the

Euclidean distance between a and r(a). Then we de�ne

the preference value of a preference a with respect to r(a)
as:

prefr(a)(a) = 1� distance(a; r(a))
p
m

2p
m=2 is the maximum distance in m-dimensional space

to the next corner reference, that is the distance from
the center to the corner references. Therefore, the values
of prefr(a)(a) are between 0 and 1. If a is close to its

next corner reference r(a), then prefr(a)(a) is close to 1.

If a is close to the center reference (0:5; � � � ; 0:5), then
prefr(a)(a) is close to 0.
Figure 1 shows the preference values for the two-
dimensional space. For each two-dimensional preference
(x y) the corresponding preference value z is shown. In
general, the value prefr(a)(a) has been given as the pref-
erence value of a preference a referring to a reference
r(a). For instance, a preference value for a categorization
would specify how strong a certain category assignment
would be.
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Figure 1: Preference values z of two-dimensional prefer-
ences (x y)

3 Neural Preferences as
Multidimensional Fuzzy Set
Representations

An m-dimensional preference can be seen as an m-
dimensional vector of a neural network as well as an
m-dimensional fuzzy set. For a neural interpretation,
the preference value is a measure of how far away a
neural preference is from a discrete symbolic corner vec-
tor, which represents the corner reference. For a fuzzy

interpretation, the preference value is a measure of how
far away a fuzzy set is from the corresponding symbolic
sharp set which represents the corner reference.



For each preference in m-dimensional space, we can spe-
cify a preference value in [0; 1]. Because of the de�nition
of the corner reference order and the de�nition of the
preference value, only preferences with the same corner
reference can be compared. This property is useful, since
the preferences (0:9 0:3) and (0:3 0:9) for the di�erent ref-
erences (1 0) and (0 1) would provide the same preference
value pref(1 0)(0:9 0:3) and pref(0 1)(0:3 0:9); however,

it cannot be decided whether (0:9 0:3) or (0:3 0:9) are
greater, since these preferences belong to di�erent corner
references. It is only possible to compare preferences
which have the same corner reference. Those prefer-
ences which have the same distance to the same corner
reference are judged as equal, for instance (0:9 0:8) and
(0:8 0:9), because pref(1 1)(0:9 0:8) = pref(1 1)(0:8 0:9).
It is not possible to determine which of these preferences
is greater and closer to the corner reference (1 1).
Our previous de�nition of the corner reference order is
not yet a partial order. However, a partial order is a
minimum requirement for the de�nition of all fuzzy sets
with multi-dimensional goal domains [Klir and Folger,
1988]. The corner reference order is already transitive
and reexive, but it is not antisymmetric. For antisym-
metry it must hold: if x �r y and y �r x then x =r y.
However, (0:8 0:9) �r (0:9 0:8) and (0:9 0:8) �r (0:8 0:9),
but both preferences are di�erent. Therefore, we cluster
those preferences which belong to the same next corner
reference into one class. We want to de�ne the corner
reference order based on these classes.

De�nition 7 (Class of Preferences) Let a =
(a1; � � � ; am) be a preference and r(a) = (r1; � � � ; rm) 2
f0; 1gm is next corner reference. Then the class of pref-

erences of a is called c(a) and contains all those pref-

erences for next corner reference r(a), which have the

same distance from r(a) as a.

De�nition 8 (Order on Preference Classes) Let

a = (a1; � � � ; am), b = (b1; � � � ; bm) be two preferences and
their common next corner reference r = (r1; � � � ; rm).
Then the corner reference order on classes of preferences

�rc is de�ned as follows: c(a) �rc c(b), if jr � aj �
jr � bj. Here � is the usual order for real numbers and

jr�aj =
p
(r1 � a1)2 + � � �+ (rm � am)2 is the distance

of the preference a from reference r. We say that prefer-

ence class c(a) is greater than or equal to the preference

class c(b).

De�nition 9 (Preference Value of a Class) The

preference value of a preference class c(a) is the pref-

erence value of an arbitrary preference which belongs to

this class.

Theorem 1 The corner reference order for preference

classes is a partial ordering.

Sketch of Proof:
Let a = (a1; � � � ; am), b = (b1; � � � ; bm) be two prefer-
ences with their corresponding preference classes c(a)
and c(b). Let r = (r1; � � � ; rm) 2 f0; 1gm be their com-
mon next corner reference. Then it is straightforward to
show reexivity, antisymmetry and transitivity for the

preference classes.

The corner reference order for classes of preferences is a
partial order which meets the particular requirements for
a neural interpretation of preferences (multidimensional
and uncertain close to 0:5) but also the general require-
ments for a fuzzy interpretation of preferences (at least
partial order in the goal domain) and also the general
requirements of neural and symbolic integration (sym-
bolic corner reference as a reference for classes of neural
preferences). The preference value of a class of output
preferences of a neural network can be understood as
the membership degree of these output preferences for
an m-dimensional fuzzy set which represents a reference
(for instance a corner reference) in m-dimensional space.
Figure 2 shows examples of four preference classes which
have the same distance to their corresponding corner ref-
erence.
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Figure 2: Classes of preferences in three-dimensional
space

Another reason for the use of classes of preferences is
based on symbolic processing. If a preference value for
(Feature1; F eature2) has to be speci�ed, a single value,
e.g. 0:8, can be given. This preference value corresponds
to all those preferences which have the same correspond-
ing distance from the speci�ed corner reference. There-
fore a class of preferences also supports the integration
of symbolic and neural representations. A class of pref-
erences represents a high-dimensional hypersphere of an
unlimited number of preferences with the same distance
from the speci�ed corner reference.

4 Interpretation of Dynamic Preference
Mappings

So far we have concentrated on static preferences and
preference classes. Our next step is to focus on dynamic
preference mappings which can be associated with cer-
tain sequential machines. As one possibility for relat-



ing principles of symbolic computational representations
and neural representations by means of preferences, we
consider a so-called neural preference Moore machine.
We have chosen this type of machine since they are
simple and widely applicable.

De�nition 10 (Preference Moore Machine)
A preference Moore machine PM is a synchronous se-

quential machine, which is characterized by a 4-tuple
PM = (I; O; S; fp), with I, O and S non-empty sets

of inputs, outputs and states. fp : I � S ! O � S is

the sequential preference mapping and contains the state

transition function fs and the output function fo. Here

I, O and S are n-, m- and l-dimensional preferences

with values from [0; 1]n, [0; 1]m and [0; 1]l, respectively.

A general version of a preference Moore machine is
shown to the left of �gure 3. The preference Moore
machine realizes a sequential preference mapping, which
uses the current state preference S and the input prefer-
ence I to assign an output preference O and a new state
preference.

Preference mapping

Output O = [0,1]m

Input I  = [0,1]n

States

 S = [0,1]l AAA
AAA
AAA

Output O

Input I

H

States
S

Figure 3: Neural preference Moore machine and its re-
lationship to a simple recurrent neural network

Simple recurrent networks (also called SRN) [Elman,
1990] have the potential to learn a sequential preference
mapping fp : I � S ! O� S automatically based on in-
put and output examples (see �gure 3), while traditional
Moore machines or Fuzzy-Sequential-Functions [Santos,
1973] use manual encodings.
Such a simple recurrent neural network constitutes a
neural preference Moore machine which generates a se-
quence of output preferences for a sequence of input
preferences. Here, internal state preferences are used
as local memory. A feedforward network represents a
neural preference Moore machine with a degenerated se-
quential memory, since there is no possibility to have an
inuence from previous patterns.
On the one hand, we can associate a neural preference
Moore machine in a preference space with its symbolic
interpretation. On the other hand, we can represent a
symbolic transducer in a neural representation. Using
the symbolic m-dimensional preferences and the corner
reference order, it is possible to interpret neural prefer-

ences symbolically and to integrate symbolic preferences
with neural preferences.
Each preference of a neural trajectory is a representative
of its preference class and it is possible to assign a sym-
bolic description as a corner reference together with a
preference value. In this way, neural preferences can be
interpreted symbolically. On the other hand, symbolic
knowledge can be integrated with neural knowledge by
associating a preference value with a symbolic corner ref-
erence. This preference value of the symbolic reference
determines which neural preference class is associated
with the symbolic reference.

5 Combination of Symbolic/Neural
Preferences

An integration of symbolic Moore machines and neural
preference Moore machines has a number of advantages.
Known knowledge can be represented as manually coded
symbolic Moore machines. Unknown knowledge can be
learned in neural preference Moore machines. Symbolic
regular relations can be understood as a top-down spe-
ci�cation for symbolic Moore machines. Alternatively, a
training set can be viewed as a bottom-up speci�cation
for neural preference Moore machines.

5.1 A Connection via Preference Classes

For one training set there can be several di�erent neural
preference Moore machines which realize the training set
and which di�er in their connections and weights. Sym-
bolic Moore machines represent knowledge at a higher
discrete abstraction level compared to neural preference
Moore machines. Therefore we want to examine a pos-
sible integration of symbolic and neural Moore machines.
We will consider a single neural or symbolic Moore ma-
chine as a unit, whose input and output should be in-
tegrated. We suggest that a preference class could be
a suitable connection between di�erent symbolic and/or
neural Moore machines (see also section 3). Below we
will focus on operations on preference classes.

5.2 Operations on Preference Classes

Notation for Preference Classes

Let [0; 1]n ! [0; 1]m be a mapping which associates in-
put preferences with output preferences. For preference
classes from [0; 1]m we can de�ne the operations for in-
tersection and union.
Let a = (a1; � � � ; am), b = (b1; � � � ; bm) be two prefer-
ences from [0; 1]m, with their corresponding preference
classes classr(a)(a) and classr(b)(b). Let prefr(a)(a) be

preference value of a preference a for a reference r(a);
similarly this holds for prefr(b)(b). If it is clear that
the reference of a preference is the next corner reference
r(a) 2 f0; 1gm, we say p(a) rather than prefr(a)(a) and

c(a) rather than classr(a)(a).
For simplicity, we will consider a preference class in
a slightly modi�ed compact notation as a pair of
reference and preference value: preference class =
(reference; preference value). For instance, ((0 1); 0:3)



is a preference class in the two-dimensional space which
contains all preferences which have the preference value
0:3 for the reference (0 1).

De�nition 11 (Union of Preference Classes)
The union of two preference classes (r(a); p(a)) and

(r(b); p(b)) is a preference class with the refer-

ence (X(r(a)1; r(b)1); � � �X(r(a)m; r(b)m)) and prefer-

ence value X(p(a); p(b)). X is the maXimum function.

PU(((r(a)1; � � � ; r(a)m); p(a)); ((r(b)1 ; � � � r(b)m); p(b)))

= ((X(r(a)1; r(b)1) � � �X(r(a)m; r(b)m)); X(p(a); p(b)))

In general, this de�nition can be described as follows:
if the (symbolically interpretable) reference of two pref-
erence classes is equal, then the reference will be kept
and the union provides the preference class with the lar-
ger preference value. If the reference of two preference
classes is di�erent then the union is extended to the ref-
erences. Thus, the union provides the preference class
with the larger preference value.

De�nition 12 (Intersection of Preference Classes)
The intersection of two preference classes (r(a); p(a))
and (r(b); p(b)) is a preference class which has the refer-

ence (N(r(a)1; r(b)1); � � �N(r(a)m; r(b)m)) and the pref-

erence value N(p(a); p(b)). N is the miNimum function.

PI(((r(a)1; � � � r(a)m); p(a)); ((r(b)1; � � � r(b)m); p(b)))

= ((N(r(a)1; r(b)1) � � �N(r(a)m; r(b)m)); N(p(a); p(b)))

That is, if the (symbolically interpretable) reference of
two preference classes is equal, then the reference will be
kept and the intersection provides the preference class
with the smaller preference value. If the reference of two
preference classes is di�erent, then the intersection is ex-
tended to the references. Thus, the intersection provides
the intersected preference class with the smaller prefer-
ence value.

5.3 Relationship of m-dimensional

Preference Classes to Fuzzy Sets

We will now examine whether our operations for pref-
erence classes ful�ll axioms which are a basic precondi-
tion for a relationship of preference classes to fuzzy sets.
The axioms are: 1) generalization of sharp sets, 2) com-
mutativity, 3) monotonicity, and 4) associativity. The
following theorems can be proven:

Theorem 2 Let �rc be the partial ordering for the m-

dimensional preference space [0; 1]m. Then the union

PU on preference classes ful�lls the axioms generaliz-

ation of sharp sets, commutativity, monotonicity, and

associativity.

Theorem 3 Let �rc be the partial ordering for the m-

dimensional preference space [0; 1]m. Then the intersec-

tion PI on preference classes ful�lls the axioms general-

ization of sharp sets, commutativity, monotonicity, and

associativity.

Now we will illustrate the use of the union and in-
tersection for preference classes. We consider the 2-
dimensional space. In the following illustration, we refer
to a small preference value with \S" and to a large with
\L". Then ((00); S) is the preference class which contains
those preferences which have a preference value S with
respect to the reference (00).
If the preference classes have the same corner reference,
they are directly comparable with their preference val-
ues. The preference class PU((r(a); p(a)); (r(b); p(b))) is
the preference class with the largest preference, that is
PU(((00); S); ((00); L)) = ((00); L). On the other hand,
PI((r(a); p(a)); (r(b); p(b))) is the preference class with
the smallest preference, that is PI(((00); S); ((00); L)) =
((00); S).
If the preferences classes have a di�erent corner
reference, the preference classes cannot be judged
only by their preference value. In this case,
the preference classes PU((r(a); p(a)); (r(b); p(b))) and
PI((r(a); p(a)); (r(b); p(b))) are a generalization of the
standard union and intersection. Therefore, it holds
that for instance PU(((00); S); ((01); S)) = ((01); S)
but PI(((00); S); ((01); S)) = ((00); S). This is based
on the following motivation: For instance, if there is
a preference for (no noun; no verb) and at the same
time a preference for (no noun; verb), then PU provides
the optimistic integration, namely (no noun; verb)
and PI provides the pessimistic integration, namely
(no noun; no verb). The preference value of the inter-
section of preference classes is the minimum of the pref-
erence values of the arguments, and the preference value
of the union of preference classes is the maximum of the
preference values of the arguments.
We have illustrated that the union and intersection on
preference classes and fuzzy sets ful�ll equivalent ax-
ioms. Furthermore, fuzzy sets and preference classes
represent uncertainty by a fuzzy value and a preference
value, respectively. Therefore there is a tight relation-
ship between fuzzy sets and preference classes if we in-
terpret them as points in m-dimensional space.

6 Discussion and Conclusion

We have introduced multidimensional neural preference
classes and preference Moore machines as one general
principle for integrating di�erent neural and/or symbolic
knowledge sources. For ranking di�erent preferences, we
introduced a new reference order and showed that the
corner preference order on preference classes is a par-
tial order. This allowed us to rank di�erent neural pref-
erences and provides preference classes as a basic link
between neural preferences and symbolic fuzzy repres-
entations at the preference level. We introduced neural
preference Moore machines which provide a link between
simple recurrent networks and symbolic transducers at
the preference Moore machine level. Finally, we demon-
strated how the concepts of preference classes and pref-
erence Moore machines can be used to integrate know-
ledge from di�erent neural and/or symbolic machines.



We used operations like intersection and union on pref-
erence classes and proved that these operations on pref-
erence classes are commutative, associative and mono-
tonic. These operations provide a link between several
neural or symbolic modules at the system architecture

level.
Recently, the question as to whether simple recurrent
networks can emulate each symbolic Moore machine
and each �nite automaton has been examined [Kremer,
1996]. On the other hand it has been shown [Goudr-
eau and Giles, 1995; Goudreau et al., 1994] that a re-
current network with only one input layer, one context
layer and one output layer (so-called Single-Layer-First-
Order-Network) is not su�cient for realizing arbitrary
�nite automata. Therefore, the link with our preferences
between simple recurrent networks and symbolic Moore
machines is particularly important.
Here we focused on Moore machines because they are
relatively simple and e�cient. So far, it could be shown
that simple recurrent networks can emulate certain re-
stricted properties of a pushdown automaton, in partic-
ular the recursive representation of structures up to a
limited depth [Elman, 1990; Wiles and Elman, 1996]. In
the future, more complex machines, like di�erent push-
down automata with explicit unlimited memory, may
be further candidates for additional principles of neural
symbolic integration. Neural preference Moore machines
like simple recurrent networks can support such proper-
ties but can also bene�t from the integration with known
symbolic heuristics.
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