October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

International Journal of Computational Intelligence and Applications
© World Scientific Publishing Company

THE EXTRACTION AND COMPARISON OF KNOWLEDGE
FROM LOCAL FUNCTION NETWORKS

KENNETH MCGARRY, STEFAN WERMTER AND JOHN MACINTYRE

School of Computing, Engineering and Technology
University of Sunderland, St Peters Campus,
St Peters Way, Sunderland, SR6 ODD, England
ken.mcgarry@sunderland.ac.uk

Received (received date)
Revised (revised date)

Extracting rules from RBF's is not a trivial task because of nonlinear functions or high
input dimensionality. In such cases, some of the hidden units of the RBF network have
a tendency to be “shared” across several output classes or even may not contribute to
any output class. To address this we have developed an algorithm called LREX (for
Local Rule EXtraction) which tackles these issues by extracting rules at two levels:
hAREX extracts rules by examining the hidden unit to class assignments while mREX
extracts rules based on the input space to output space mappings. The rules extracted
by our algorithm are compared and contrasted against a competing local rule extraction
system. The central claim of this paper is that local function networks such as radial
basis function (RBF) networks have a suitable architecture based on Gaussian functions
that is amenable to rule extraction.

Keywords: Rule Extraction, Radial Basis Functions, Neural Networks, Clustering, Local
Functions

1. Introduction

Neural networks have been applied to many real-world, large-scale problems of
considerable complexity. They are useful for pattern recognition and they are robust
classifiers, with the ability to generalize in making decisions about imprecise input
data 3. They offer robust solutions to a variety of classification problems such as
speech, character and signal recognition, as well as functional prediction and system
modeling where the physical processes are not understood or are highly nonlinear
15

Although neural networks have gained acceptance in many industrial and sci-
entific fields they have not been widely used by practitioners of mission critical
applications such as those engaged in aerospace, military and medical systems.
This is understandable since neural networks do not lend themselves to the nor-
mal software engineering development process. Knowledge extraction by forming
symbolic rules from the internal parameters of neural networks is now becoming an
accepted technique for overcoming some of their limitations 1617, In this paper we

October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

2

describe our method of extracting knowledge from an RBF network which is classed
as a local type of neural network. That is, its internal parameters are limited to
responding to a limited subset of the input space. We also compare and contrast
our technique with a specialized local type neural architecture. The extracted rules
are examined for comprehensibility, accuracy, number of rules generated and the
number of antecedents contained in a rule.

This paper is a revised and extended version of our IJCAI-01 paper ‘2. The re-
mainder of the paper is structured as follows: Section two describes the motivations
for performing knowledge extraction. Section three describes why the architecture
of the radial basis function network is particulary suitable for knowledge extrac-
tion. Section four outlines how our knowledge extraction algorithm produces rules
from RBF networks and Section five explains the results of the experimental work.
Section six discusses the conclusions of the experimental work.

2. Knowledge Extraction

In this section we discuss motivations, techniques and methodology for knowledge
extraction from RBF networks. RBF networks provide a localized solution '3 that is
amenable to extraction, which Section three discusses in more detail. It is possible
to extract a series of IF.. THEN rules that are able to state simply and accurately
the knowledge contained in the neural network. In recent years there has been a
great deal of interest in researching techniques for extracting symbolic rules from
neural networks. Rule extraction has been carried out upon a variety of neural
network types such as multi-layer perceptrons '8, Kohonen networks '? and recur-
rent networks 4. The advantages of extracting rules from neural networks can be
summarized as follows:

e The knowledge learned by a neural network is generally difficult to under-
stand by humans. The provision of a mechanism that can interpret the
networks input/output mappings in the form of rules would be very useful.

e Deficiencies in the original training set may be identified, thus the gener-
alization of the network may be improved by the addition/enhancement
of new classes. The identification of superfluous network parameters for
removal would also enhance network performance.

e Analysis of previously unknown relationships in the data. This feature has
a huge potential for knowledge discovery/data mining and possibilities may
exist for scientific induction .

In addition to providing an explanation facility, rule extraction is recognised as
a powerful technique for neuro-symbolic integration within hybrid systems !'. For

a general discussion on the practicalities and issues of rule extraction see Andrews
1

October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

International Journal of Computational Intelligence and Applications 3

Modified
Data Sets

Training
Data

Evaluate RBF "\«

Rule Extractio
Algorithm

Initial [Preprocess
Data Sets [Data Sets

RBF network
Data base

5

hREX
Extracted
Rules

mMREX
Extracted
Rules

Fig. 1. Knowledge extraction system data flow and data transformation

3. Radial Basis Function Networks

Radial basis function (RBF) neural networks are a class of model that has functional
similarities found in many biological neurons. In biological nervous systems certain
cells are responsive to a narrow range of input stimuli, for example in the ear there
are cochlear stereocilla cells which are locally tuned to particular frequencies of
sound 3. Figure 2 shows a network trained on a noisy XOR data set for illustration.
This network has two input features, two output classes and four hidden units.

The RBF network consists of a feedforward architecture with an input layer, a
hidden layer of RBF “pattern” units and an output layer of linear units. The input
layer simply transfers the input vector to the hidden units, which form a localized
response to the input pattern. Learning is normally undertaken as a two-stage pro-
cess. The first stage consists of an unsupervised process in which the RBF centres
(hidden units) are positioned and the optimum field widths are determined in rela-
tion to the training samples. The second stage of learning involves the calculation
of the hidden unit to output unit weights and is achieved quite easily through a
simple matrix transformation. The radial basis functions in the hidden layer are im-
plemented by kernel functions, which operate over a localized area of input space.
The effective range of the kernels is determined by the values allocated to the cen-
tre and width of the radial basis function. The Gaussian function has a response
characteristic determined by equation 1.

October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

Input layer Hidden layer Output layer

hidden unit 1 Centres 512.3584 -512.3584

0.7325 W2= | 320.2506 320.2506
0.2409

195.4598 -195.4598

width = 0555 -390.7925 390.7925

hidden unit 2 Centres

0.9612

° JL 0.7901
width'= 0.555

’ hidden unit 3 Centres

0.0491

0.9696
e widtH = 0.555

hidden unit 4 Centres

JL 0.2120

0.1558

Yl

bias =1.5118

Y2

bias =-0.5118

width = 0.555

Fig. 2. Parameters for RBF network trained on noisy XOR

g

Zj(x) = exp <—M) 1)

The response of the output units is calculated quite simply using equation 2.

J
> Wi Zj(w) (2)
i=l

where:
W = weight matrix, Z = hidden unit activations,
z = input vector, 4 = n-dimensional parameter vector,
o = width of receptive field.

3.1. RBF training

The first stage was to train RBF networks to an acceptable level of accuracy on
all data sets. The specific level of accuracy varied with each data set, the literature
was examined to provide guidance on what accuracy levels could be achieved. The
accuracy levels stated in the tables are the best out of up to 10 test runs. Training
of the RBF networks required the setting of three parameters, the global error, the
spread or width of the basis function and the maximum number of hidden units.
The value assigned to the global error setting may result in fewer hidden units
being used than the maximum value. If the error value is not reached, training
will terminate when the maximum number of hidden units has been assigned. The
training and test data for the construction of the RBF networks were generally split

October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

International Journal of Computational Intelligence and Applications 5

50/50. The training algorithm added a hidden unit at every epoch to reduce the
global error. The location of the hidden unit corresponded to the training vector
with the largest error. This technique avoided the need to specify the number of
hidden units in advance as required by alternative techniques such as Expectation
Maximization (EM). The number of hidden units necessary for similar accuracy
levels to EM was not noticeably larger. The only disadvantage is the requirement
for several training runs to obtain a good accuracy. We do not use any techniques
for pruning the RBF networks prior to extracting the symbolic rules.

3.2. Data Sets

In order to allow good benchmarking and comparison we used a mixture of well
known benchmark data as well as two new vibration data sets for our tests. The
data sets were selected from various sources but mainly obtained from the collection
maintained by the University of California at Irvine (UCI). The vibration data
sets were produced as part of two large projects which were concerned with the
monitoring the health of industrial machinery. The data sets represent a variety of
synthetic and real world problems of varying complexity (i.e. number of examples,
input features and classes).

Table 1. Composition of data sets used in experimental work

Data Set Examples Outputs Inputs Cont Discrete Missing
XOR(Binary) 4 2 2 No Yes No
XOR(Continuous) | 100 2 2 Yes No No
Iris 150 3 4 Yes No No
Vowell(Peterson) 1520 10 5 Yes Yes No
Vowell(Deterding) | 990 11 11 Yes Yes No
Protein(Yeast) 1484 10 8 Yes No No
Protein(Ecoli) 336 8 8 Yes No No
Credit(Japanese) 125 2 9 Yes Yes Yes
Credit(Australian) | 690 2 15 Yes Yes Yes
Diabetes(Pima) 768 2 8 Yes No No
Monks1 556 2 6 No Yes No
Sonar 208 2 60 Yes No No
Vibration 1 1028 3 9 Yes No No
Vibration 2 1862 8 20 Yes No No

Table 1 gives details of the data sets. The columns indicate the number of
examples, the number of ouput features or classes, the number of input features,
whether the data set contains continuous data or discrete data and the last column
indicates if any data is missing.

October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

6

4. LREX: Rule Extraction Algorithm

The development of the LREX algorithm was motivated by the local architecture
of RBF networks which suggested that rules with unique characteristics could be
extracted. In addition, there was little published work on extracting rules from
ordinary RBF networks 8. The LREX algorithm is composed of two modules: the
mREX module extracts IF..THEN type rules based on the premise that a hidden
unit can be uniquely assigned to a specific output class. However, hidden unit shar-
ing occurs within networks trained on non-linear or complex data. This phenomena
reduces rule accuracy as several hidden units may be shared amongst several classes.
The second module, hREX was developed to identify which hidden units are shared
between classes. Analysis of how each hidden unit contributes provides information
to determine a class. The next two Sections describe how the mREX and hREX
modules provide the user with complementary types of extracted rules that explain
the internal operation of the original RBF network.

4.1. mREX: Input-to-output mapping
The functionality of the mREX algorithm is shown in Figure 3. The first stage of

Input:
Hidden weights u (centre positions)
Gaussian radius spread o
Output weights W2
Statistical measure S
Training patterns
QOutput:
One rule per hidden unit
Procedure:
Train RBF network on data set
Collate training pattern “hits” for each hidden unit
For each hidden unit
Use W2 correlation to determine Class label
Use “hits” to determine S
Select S format {min, maz, std, mean, med}
For each p;
Xjower = u; —o; xS
Xupper = p; +0; %S
Build rule by:
antecedent = [X;ower; Xy pper]
Join antecedents with AND
Add Class label
Write rule to file

Fig. 3. mREX rule-extraction algorithm

the mREX algorithm is to use the W2 weight matrix (see Figure 2) to identify

October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

International Journal of Computational Intelligence and Applications 7

the class allocation of each hidden unit. The next stage is to calculate the lower
and upper bounds of each antecedent by adjusting the centre weights p using
the Gaussian spread o. The lower and upper limits are further adjusted using a
statistical measure S gained from the training patterns classified by each hidden
unit. S is used empirically to either contract or expand each antecedents range in
relation to the particular characteristics of these training patterns.

The entire rule set for the Iris domain is presented in Figure 4. Note that there
are four extracted rules, one for each RBF hidden unit.

Rule 1 :

IF (SepalLength > 4.1674 AND < 5.8326) AND
IF (SepalWidth > 2.6674 AND < 4.3326) AND
IF (PetalLength > 0.46745 AND < 2.1326) AND
IF (PetalWidth > 0.53255 AND < 1.1326)
THEN..Setosa

Rule 2 :

IF (SepalLength > 5.2674 AND < 6.9326) AND
IF (SepalWidth > 1.9674 AND < 3.6326) AND
IF (PetalLength > 3.1674 AND < 4.8326) AND
IF (PetalWidth > 0.46745 AND < 2.1326)
THEN..Versicolor

Rule 3 :

IF (SepalLength > 5.9674 AND < 7.6326) AND
IF (SepalWidth > 2.3674 AND < 4.0326) AND
IF (PetalLength > 5.0674 AND < 6.7326) AND
IF (PetalWidth > 1.4674 AND < 3.1326)
THEN..Virginica

Rule 4 :

IF (SepalLength > 4.8674 AND < 6.5326) AND
IF (SepalWidth > 1.6674 AND < 3.3326) AND
IF (PetalLength > 4.1674 AND < 5.8326) AND
IF (PetalWidth > 1.1674 AND < 2.8326)
THEN..Virginica

Fig. 4. mREX extracted rules from Iris domain

4.2. hREX: Hidden unit analysis

A different approach to rule extraction is taken by the RREX algorithm which uses
quantization and clustering on the network parameters (weights and activation
levels) to form an abstraction of its operation. Figure 5 shows the algorithm in
detail. The number of extracted rules is determined by the user who can place an
upper limit on the rules extracted for each class. This is a useful feature since it
enables a tradeoff to be made between rule size and rule comprehensibility.

October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

Input:
Output weights W2
Hidden unit activations Z (training data)
Output weights quantization modifier o
Hidden unit activation quantization modifier §
Maximum Cluster number N
Training patterns by sorted by class T'
Intermediate information:
Quantized W2 weights Q W2
Quantized hidden unit activations QZ
Average Quantized hidden unit activations AQZ
QOutput:
One rule per cluster
Procedure:
Quantize W2 weights with «
Quantize hidden unit activations Z with g
Separate training patterns by class T’
For each class
Partition @Z up to NC Clusters
For each N Cluster
Identify Positive QZ activations
Calculate Average AQZ value for cluster
Identify Positive @ W2 weights attached to QZ
Build rule by:
IF AQZ==Positive AND QW2 ==Positive
Hidden unit H belongs to rule
Join Hidden Units with AND
Add Class label
Write rule to file

Fig. 5. hREX rule-extraction algorithm

This is achieved by three important parameters:

e o which determines the minimum weight value (positive) to be quantized
as a “one”, weights below this cutoff point are quantized to —1 and do not
participate in rule extraction.

e 3 which determines the minimum hidden unit activation level. Hidden
units with activation levels below this cutoff point will not be quantized
and will play no further part in rule extraction.

e N determines the maximum number of clusters that the training set (for
each class) is divided into. This process abstracts the input space into a
number of distinct regions which will require a separate rule to identify.

The quantization process is intended to simplify the hidden unit rule extraction
process. Quantization results in a “yes” or “no” decision that will either include
or exclude a weight value from the rule extraction process. Negative weights can
be removed as they indicate that an input feature or hidden unit does not actively

October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

International Journal of Computational Intelligence and Applications 9

participate in the classification process i.e. they do not provide useful information.

Note that valid rules consist of both a positive quantized weight (QW2) and a
positive quantized activation (AQZ) level. A rule consists of one or more hidden
units which must all be active for the class lable to be satisified. Some hRules rules
extracted from the Ecoli domain are presented in Figure 6. For instance, for Rule 4
to “fire”, each antecedent must be satisfied so hidden units 5, 19, 20, 24, 25, 26, 28
and 31 must all be active. It can be seen that hidden unit 20 participates in both
class 3 and class 4.

Rule £9 Class: 3

IF((H5 == TRUE) AND
(H19 == TRUE) AND
(H20 == TRUE) AND
(H24 == TRUE) AND
(H25 == TRUE) AND
(H26 == TRUE) AND
(H28 == TRUE) AND
(H31 == TRUE))

THEN
Class: 3

Rule #10 Class: 4

IF((H12 == TRUE) AND
(H20 == TRUE) AND
(H22 == TRUE) AND
(H23 == TRUE) AND
(H32 == TRUE))

THEN
Class: 4

Fig. 6. hREX extracted rules from the Ecoli domain

hREX rules are useful for identifying the internal structural relationships formed
by the hidden units. This is demonstrated on those RBF networks that have a poor
performance on certain classes. These RBF networks produce hREX rules which
exhibit a large degree of hidden unit sharing or in the worse cases fail to generate
any hREX rules for these classes.

Figure 7 shows the accuracy of the hREX rules against the rule size (compre-
hensibility) for RBF networks trained on the Vibration 1, Monks and Sonar data
sets. The Vibration shows a steady increase in accuracy with each additional rule
until it levels off at a cluster size of 12. The rules extracted from Sonar actually
lose accuracy beyond a certain point before the accuracy reaches a steady value.
Generating additional rules for the Monks data set after the optimum cluster size
has been reached produces an oscillating effect where the accuracy does not level
off.

October 15, 2001 8:10 WSPC/157-1JCIA

10

Accuracy

75 -

70 -

35
2

ijcia 01

P

== Vibration 1
8= Monks
Sonar

. . . .
8 10 12 14
Number of clusters per class

Fig. 7. hREX rule size and complexity

5. Analysis Of The Results

The performance of the RBF rule extraction algorithm was compared with a related
system called MCRBP/RULEX which was developed by Andrews and Geva 2.
MCRBP builds RBF-like networks with specialized activation functions. Once the
networks are trained, the RULEX algorithm can then be used to extract IF.. THEN
rules with boundaries. The rules extracted by RULEX are in a very similar format
as to those produced by the author’s system. Table 2 shows the results of the
experimental work. The first column identifies the data set. The second column
presents the mREX accuracy alongside the original RBF accuracy. The third column
details the hAREX accuracy next to the original RBF accuracy and the fourth column

shows the RULEX accuracy

Comparison between RBF net, mREX, hREX and RULEX accuracy

)
16

Data set mREX hREX RULEX
XOR(Binary) 100/100 100/100 100
XOR(Continuous) | 96/100 100/100 100
Iris 93/96 93/96 100
Vowell(Peterson) 43/86 22/86 -
Vowell(Deterding) | 9/62 20/62 38
Protein(Yeast) 26/57 66/57 28
Protein(Ecoli) 49/87 72/87 88
Credit(Japanese) 73/93 66/93 93
Credit(Australian) | 66/71 64/71 88
Diabetes(Pima) 65/76 70/76 69
Monksl 79/83 60/83 72
Sonar 57/95 58/95 -
Vibration 1 56/73 69/73 61
Vibration 2 73/94 72/94 -

October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

International Journal of Computational Intelligence and Applications 11

Table 3 shows the number of rules generated by the three systems. The rule set
size quoted for LREX is based on the unmodified basic version.

Table 3. Comparison between rule set size of mREX, hREX and RULEX

Data set mREX hREX RULEX
XOR(Binary) 4 4 4
XOR(Continuous) | 4 4 4
Iris 4 4 5
Vowell(Peterson) 30 80 -
Vowell(Deterding) | 200 110 11
Protein(Yeast) 120 24 9
Protein(Ecoli) 35 24 9
Credit(Japanese) 50 6 2
Credit(Australian) | 50 20 5
Diabetes(Pima) 300 11 3
Monks1 20 24 3
Sonar 20 10 -
Vibration 1 30 25 2
Vibration 2 100 32 -

RULEX extracts highly compact rule sets compared with LREX. The majority
of the domains can be represented with as few as 3-5 rules. Unfortunately, RULEX
completely failed to generate rules for three of the domains. This problem was
tracked down to the initial MCRBP network, as it was unable to form a viable
classifier on the training data. Therefore, any rules extracted would be invalid.
RULEX also failed to provide rules to cover a specific class in the vibration 1
domain. Training the MCRBP networks took fewer attempts to reach acceptable
accuracies than the equivalent RBF networks (typically 2-3 runs). MCRBP/RULEX
could not form a viable network on the vowel, sonar and vibration 2 domains. It
is likely that the specialized architecture cannot cope with the large number of
input features present in these data sets. However, by using non-overlapping local
functions the MCRBP /RULEX algorithm can form a rule from each function that
is specific to a class. This requires fewer rules to form a classifier.

The hRREX algorithm produces fewer rules than the mREX algorithm and are
generally more accurate. A smaller rule set enables a better understanding of the
internal operation of the RBF network. further analysis of the hREX rules proved
to be interesting as several of the RBF networks have up to 35-40% of their hidden
units shared between the various output classes. Such results are associated with
those RBF networks trained on data which has caused a high degree of overlap
to occur between the hidden units. Overlap prevents the unique assignment of a
hidden unit to a particular output class and is the major cause of rule inaccuracy.

The experimental results also revealed a number of disadvantages of rule extrac-
tion from networks with local representations: Sensitivity to non-discriminatory in-
put features, which may lead to a high degree of overlap occurring with the hidden
units. Figure 8 shows how in the left hand diagram the input space is composed of

October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

12

Input space RBF space Output space

02(cr osses)

f(c2) i

% +1 4 AN

X f(c1) ol(circles)

C ol(circles)

hf(c2)

L @_» 02(cr osses)

Fig. 8. Relevance of attributes in input space

two dimensions with two classes. The middle diagram shows the input space trans-
formed nonlinearly into RBF space which is normally of a higher dimension but is
approximately linearly separable. It can be seen that RBF unit f(c2) shows little
response to the input data while the first RBF unit f(c1) is very responsive. The
weights from f(c2) to the output unit will tend to be very small or even negative.
The right hand diagram shows the output unit space where the class separation is
given by 01=02 line i.e the class label is decided by the largest output unit value.
The RBF network is positioned under the three graphs to highlight the functionality
of the transformations. See Kubat for a further explantion 7.

The lack of accuracy in certain domains has prevented the data mining po-
tential of the extracted rules from being fully realized. However, the providers of
the Vibration data set found the extracted rules to be quite illuminating in terms
of highlighting input to output mappings. To be sure, many of the rules simply
confirmed well understood relationships in the original data. However, the rules
provided “interesting” information on the less well known input parameters. Prior
to the rule extraction experiments these parameters were simply extra input fea-
tures incorporated into the neural network training data. A manual examination of
the rule set by the domain experts indicated some useful ratios between the lower
and upper antecedent values 1°.

October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

International Journal of Computational Intelligence and Applications 13

6. Conclusions

The work described in this paper has tackled the difficult issue of knowledge ex-
traction from RBF networks. The rules extracted by the LREX algorithm provide
information about the original RBF network in two forms: an input to output map-
ping and information regarding those hidden units that participate in classification.
The knowledge extracted by the mREX algorithm transforms the original RBF net-
work into a rule based classifier. This makes the input to output mapping of the
RBF network transparent and open to scrutiny. However, the number of rules pro-
duced is dependent on the number of hidden units and therefore a large number
of rules may obscure the comprehensibility. This problem is partially solved by the
hREX algorithm which can generate a maximum number of rules determined in
advance by the user. The tradeoff is rule size (and generally accuracy) versus com-
prehensibility. Some RBF networks may naturally be described by small rule sets
that are accurate but still allow a good understanding of their internal structure.
Other RBF networks may have modeled complex functions and their hidden units
are used by several classes, in which case the hREX algorithm will provide useful
information regarding the extent of this activity.

In terms of novelty and new knowledge, the rule extraction algorithms have
enabled a symbolic analysis to be performed on standard Gaussian RBF networks.
Previous work has concentrated on specialized architectures or have modified the
hidden units to avoid overlap such as the rectangular basis functions of Huber ¢. The
mREX rules provide an input to output mapping which can be used to determine
why a particular input vector will be assigned to a given class. Also, the internal
representation formed by the hidden units is made transparent. The activity of the
hidden layer is revealed as the hidden units can be identified as either cooperating
or working singly to form a classification. We are currently investigating techniques
to manage the effects of overlapping hidden units. Fuzzy logic appears to be a
suitable candidate as it offers the benefits of maintaining rule comprehensibility
and accuracy while maintaining a similar format. In addition, it will be useful
to understand how rules can be extracted from basis functions other than the
Gaussian. The thin-plate spline functions for example have characteristics between
the local Gaussian and the global sigmoid function ?. Such functions may provide
the platform to extract rules that are more descriptive, suffer less from large input
dimensionality and from superfluous inputs. In addition, the extracted rule sets
would certainly benefit from some means of providing a summary of the global
trends. Work by Gaines 5 suggests the use of exception-directed acyclic graphs
(EDAGs) which he developed for simplifying decision trees and production rules.

References

1. R. Andrews, J. Diederich, and A. Tickle. The truth will come to light:directions
and challenges in extracting the knowledge embedded within trained artificial neural
networks. IEEE Transactions on Neural Networks, 9(6):1057-1068, 1998.

October 15, 2001 8:10 WSPC/157-1JCIA ijcia’01

14

w

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Andrews and S. Geva. On the effects of initialising a neural network with prior
knowledge. In Proceedings of the International Conference on Neural Information
Processing (ICONIP’99), pages 251-256, Perth, Western Australia, 1999.

C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.
M. Craven and J. Shavlik. Using neural networks for data mining. Future Generation
Computer Systems, 1997.

B. Gaines. Transforming rules and trees. In U. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthursamy, editors, Advances in Knowledge Discovery and Data
Mining, pages 205-226. AAAI-Press, 1996.

K. P. Huber and M. R. Berthold. Building precise classifiers with automatic rule
rule extraction. In Proceedings of the International Conference on Neural Networks,
volume 2, pages 117-120, 1995.

M. Kubat. Decision trees can initialize radial basis function networks. IEEE Trans-
actions on Neural Networks, 9(5):813-821, 1998.

D. Lowe. On the iterative inversion of RBF networks: a statistical interpretation.
In Proceedings of the International Conference on Artificial Neural Networks, pages
29-33, Bournemouth, UK, 1991.

D. Lowe. On the use of nonlocal and non positive definite basis functions in radial basis
function networks. In Proceedings of the 3rd International Conference on Artificial
Neural Networks, pages 206-211, Cambridge, UK, 1995.

K. McGarry and J. MacIntyre. Data mining in a vibration analysis domain by ex-
tracting symbolic rules from RBF neural networks. In Proceedings of 14th Interna-
tional Congress on Condition Monitoring and Engineering Management, pages 553—
560, Manchester, UK, 4th-6th September 2001.

K. McGarry, S. Wermter, and J. Maclntyre. Hybrid neural systems: from simple
coupling to fully integrated neural networks. Neural Computing Surveys, 2(1):62-93,
1999.

K. McGarry, S. Wermter, and J. MacIntyre. Knowledge extraction from local function
networks. In Seventeenth International Joint Conference on Artificial Intelligence,
Seattle, USA, August 4th-10th 2001.

J. Moody and C. J. Darken. Fast learning in networks of locally tuned processing
units. Neural Computation, pages 281-294, 1989.

C. W. Omlin and C. L. Giles. Extraction and insertion of symbolic information in
recurrent neural networks. In V.Honavar and L.Uhr, editors, Artificial Intelligence
and Neural Networks:Steps Towards principled Integration, pages 271-299. Academic
Press, San Diego, 1994.

A. Roy, S. Govil, and R. Miranda. An algorithm to generate radial basis function
(RBF)-like nets for classification problems. IEEE Neural Networks, 8(2):179-201,
1995.

J. Shavlik. A framework for combining symbolic and neural learning. Machine Learn-
ing, 14:321-331, 1994.

R. Sun. Beyond simple rule extraction: the extraction of planning knowledge from
reinforcement learners. In Proceedings of the IEEE International Joint Conference on
Neural Networks, pages 105-110, 2000.

S. Thrun. Extracting rules from artificial neural networks with distributed repre-
sentations. In G.Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural
Information Processing Systems 7, pages 505-512. MIT Press, San Mateo, CA, 1995.
A. Ultsch, R. Mantyk, and G. Halmans. Connectionist knowledge acquisition tool:
CONKAT. In J. Hand, editor, Artificial Intelligence Frontiers in Statistics: AI and
statistics III, pages 256-263. Chapman and Hall, 1993.

