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Abstract— Imitation learning offers a valuable approach for
developing intelligent robot behaviour. We present an imitation
approach based on an associator neural network inspired by
brain modularity and mirror neurons. The model combines
multimodal input based on higher-level vision, motor control and
language so that a simulated student robot is able to learn from
observing three behaviours which are performed by a teacher
robot. The student robot associates these inputs to recognise
the behaviour being performed or to perform behaviours by
language instruction. With behaviour representations segregating
into regions it models aspects of the mirror neuron system as
similar patterns of neural activation are involved in recognition
and performance.

I. INTRODUCTION

Current robot applications rarely use neural networks, neu-
roscience inspired models or language instruction. Typically
traditional methods for robot control have been historically
wider spread than neural networks as such systems need to
combine complex perception and motor skill to achieve non-
trivial behaviour. Furthermore, many robot approaches fail to
make full use of language to aid robot-human interaction. For
instance, the tour-guide robot Rhino [3] does not interact via
language. The Pearl robot to guide the elderly has a restricted
number of possible spoken questions but uses also touch
sensitive displays for interactions [14].

However, an approach that is inspired by the brain may
offer an efficient approach to robot learning and behaviour.
In response to this we propose a robot system that uses an
associator neural network which models specific aspects of the
brain in terms of a modular organisation and learning through
imitation based on the concepts of the mirror neuron system
[20].

In our approach a student robot learnt from a teacher robot
how to perform three separate behaviours ‘pick’, ‘lift’ and
‘go’ based on multimodal inputs. These multimodal inputs
were vision, language and motor condition whose combination
enabled the student robot to learn to associate language
instructions and the behaviour of another robot with its own
behaviour. Once the student robot learnt by imitation it was

able to predict which behaviour was being performed by
the teacher and perform one of these behaviours based on
a language instruction. The fusion of such multimodal inputs
is critical for the common acceptance of service robot due to
the need to instruct robots to perform actions in a natural way
through language and visual demonstration [24].

One design motivation for our imitation robot approach is
modularity in the brain. Brain modularity can be viewed as
various distributed neural networks in diverse regions which
perform processing in a parallel distributed manner to perform
specific cognitive function [19]. In the brain complex tasks
are split into smaller subtasks, with the uniqueness of the
human brain not coming from the number of neurons but
from structural complexity. Although, it is not fully understood
why certain regions of the brain are associated with specific
cognitive function, the performance achieved would not be
possible without this type of modularity [23].

Research into the form that regional brain modularity takes
has focused on brain lesion examination and brain imaging
techniques. As with other higher cognitive functions, language
and vision for instance have a modular processing structure
with various theories available on the form that this modularity
takes. Over 30 brain regions have been observed to be involved
in the visual system alone [7]. Probably the earliest model of
language process is one based on two main areas: Wernicke’s
and Broca’s areas linked via the arcuate fasciculus [1].

A number of studies have observed further regions involved
in language processing and so extended the modular model of
language processing. For instance, Papke et al. 1999 [16] find
increased activation for silent word generation in Broca’s and
Wernicke’s areas and sections of the left frontal, temporal and
partial lobes. In the visual system the middle temporal area
determines the direction of visual motion and velocity [13]
and colour stimulus processing is performed by areas of the
ventral collateral cortex and in particular the collateral sulcus
and lingual gyrus [21].



II. ROBOT IMITATION LEARNING BASED ON THE MIRROR

NEURON SYSTEM

Imitation learning is common in everyday life and it speeds
up the learning process [22]. Many forms of elaborate be-
haviour such as social interaction and tool manipulation are
learnt by one generation through the imitation of the previous
generation [18]. As a result of the role played by imitation
learning in animal and human development there has been a
great deal of interest from diverse fields such as neuroscience,
robotics, computation and psychology. The degree of trial-by-
error learning is reduced as a great deal of information can be
gained from observing and imitating another robot or human
teacher [6]. It is a useful approach for robots as it should
allow them to learn to cope with complex environments and
reduces the search space and the number of training examples
compared with reinforcement learning [6].

Our robot imitation model using multimodal inputs makes
use of concepts from the mirror neuron system [20] found in
monkeys and later also in humans [8]. In the mirror neuron
system a class of the neurons in the F5 area not only fire when
performing an action but when seeing or hearing the action
performed. The role of mirror neurons is to depict actions so
they are understood or can be imitated based on the action goal
[20]. The ability to understand others actions, beliefs, goals,
expectations allows the observer to predict future actions and
so determine if they are helpful or unhelpful [8].

It was found that there is increased excitation in the regions
of the motor cortex that were responsible for performing
a movement even when they were simply observing it. In
humans the mirror neuron area in the brain includes the left
superior temporal sulcus, the left inferior parietal lobule and
the anterior region of Broca’s area. The association of mirror
neurons with a language region of the human brain according
to Rizzolatti and Arbib 1998 [20] indicates the role played by
the mirror neuron system in the evolution of language. The
ability to recognise an action is required for the development
of communication between members of a group and finally
speech.

Previously the mirror neuron system has been used in other
robot imitation approaches. For instance, Demiris and Hayes
2002 [6] used the concept of mirror neurons with an architec-
ture containing behaviour and forward models. A behaviour
model is given information on the current state and the goal
and produces the required motor commands. Following which
the forward model creates the expected next state based on
the output from the behaviour model. Comparing the predicted
state with the actual state of the demonstrator produces an error
signal. This error signal is used to create a confidence value to
establish the confidence by which a particular behaviour was
identified. Two simulated robots are used in this approach, with
an imitator robot reading the position of the demonstrator robot
based on angles of the joints. The forward model produces
forecasts for each joint in the demonstrator robot and compares
them with the actual values at the next time step. Using a set of
stored action orders the imitator robot increases the confidence

value for the order that matches that of the demonstrator
actions and reduces the others.

Billard and Matarić 2001 [2] also based an imitation robot
approach on the mirror neuron system. This approach uses a
hierarchy of neural networks and provides a depiction of the
visuo-motor pathways. In doing so there is an examination of
the ability to reproduce human arm movements. The model
uses the temporal cortex to process visual information to
identify the direction and orientation of the teacher’s limbs
with reference to the teacher’s body. The motor control is
based on a hierarchical model with a spinal cord module at
the lower level. Learning of movement occurs in the pre-motor
cortices and cerebellum modules. These modules make use of
a Dynamic Recurrent Associative Memory Architecture which
enables time series and spatio-temporal invariance to be learnt.
The model is implemented on eight sets of arm movements
and reproduces motions despite the noisy environment.

It should be noted that although the mirror neuron system
in humans incorporates language processing neither of these
imitation approaches consider language. Our model differs
from existing imitation models by integrating language with
vision and motor control and testing this model on a simulated
robot platform.

III. EXPERIMENTAL METHOD

First, a robot simulator was produced with a teacher robot
performing ‘go’, ‘pick’ and ‘lift’ actions continuously in an
environment (Fig. 1). The student robot observed the teacher
robot performing the behaviours and was trained by receiving
multimodal inputs. These multimodal inputs were (i) higher-
level visual inputs which were the x and y coordinates and
the rotation angle � of the teacher robot relative to the nearest
wall, (ii) the motor directives of the robot (forward, backward,
turn left and turn right) and (iii) a language description stating
what the teacher was doing (‘go’, ‘pick’ or ‘lift’).

The coordinates x and � are relevant to avoid a wall during
the ‘go’ behaviour and x, y and � are relevant for the ‘pick’
action. They are thus task-related and can theoretically be
retrieved using a lower visual system by the agent. They were
also designed in such a way that once the imitation system is
implemented on a real robot all could be determined by the
student robot when observing the teacher robot. The coordinate
transformations that lead to this common representation of the
teacher and the learner are however not a topic of this paper.

The simulated teacher robot performs the three behaviours
in reoccurring loops and in the following order: the behaviour
represented by the word ‘go’ involves moving around the
environment until it reaches a wall and then turns away from
the wall at a set angle. It switches to the behaviour represented
by the word ‘pick’ if it comes close to the target at the top of
the arena at x and y coordinates 0,0 and if it has a suitable
angle of ���� � � � ���. This accounts for the object to
be within the teacher’s field of vision which is a condition to
perform a “docking” procedure produced by a reinforcement
approach as described by Weber et al. 2003 [26]. Hereby the
robot moves in a way such that it arrives at the final ‘pick’
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Fig. 1. The simulated environment containing the robot. The x,y and �
coordinates of the robot are taken with respect to the nearest wall. Dashed
lines indicate the borders of areas “belonging” to a wall. The area belonging
to the top wall is depicted in light grey.

position that was parallel to the table in front of the object. It
follows the behaviour represented by the word ‘lift’ involving
moving backward to leave the table and then turning around
to face toward the middle of the arena. Then it goes into the
next loop starting with another ‘go’ behaviour. All behaviours
involve only body movements but no actual gripper actions.

When receiving the multimodal inputs the student robot was
required to learn these behaviours so that it could recognise
them in the future or perform them based on a language
instruction. In doing so it was required to determine the
appropriate next motor direction given the current rotation
angle and x and y coordinates so as to achieve the goal of
completing the behaviour.

The imitation model used an associator network based on
the Helmholtz machine approach [5]. The Helmholtz machine
generates representations of data using unsupervised learning.
Bottom-up weights � �� generate a hidden representation ��

of some input data ��. Conversely, top-down weights � ��

reconstruct an approximation of the data �� from the hidden
representation. Both sets of weights are trained by the un-
supervised wake-sleep algorithm which uses the local delta
rule. Parameterised by a sparse coding approach the Helmholtz
machine creates biologically realistic edge detectors from
natural images [25] and unlike a pure bottom-up recognition
model [11] produces also the generative model of the data as
neural connections. This is used during testing when we regard
either the language area or the motor area as output.

The sparse coding paradigm leads to the extraction of
independent components in the data which is not desired
since many of these components would not span over multiple
modalities. Therefore we augmented the sparsity toward a
winner-take-all mechanism as used in Kohonen networks [11].

The modified learning algorithm is described in the following
and consists of alternating wake- and sleep phases to train the
top-down and the bottom-up weights, respectively.

In the wake phase, a full data point �� is presented which
consists of the full motor, language and higher-level visual
components. The linear hidden representation �� � � ���� is
obtained from which a competitive version �� � is obtained by
taking the winning unit of �� (given by the strongest active unit)
and assigning activation values under a Gaussian envelope to
the units around the winner. Thus, ��� is effectively a smoothed
localist code. The reconstruction of the data is obtained by
�� � � ����� and the top-down weights from units � to units �

are modified according to

����
�� � 	 ��� � ��� � ����

with an empirically determined learning rate 	 � �
���. The
learning rate was increased 5-fold whenever the active motor
unit of the teacher changed. This was critical during the ‘go’
behaviour when the robot turned for a while in front of a wall
until it would do its first step forward. Without emphasising
the ‘forward’ step, the student would learn only the ‘turn’
command which dominates this situation. Behaviour changes
are significant events [10] and neuroscience evidence supports
that the brain has a network of neurons that detect novel or
significant behaviour to aid learning [12], [15].

In the sleep phase, a random hidden code �� � is produced
by assigning activation values under a Gaussian envelope
centred on a random position on the hidden layer. Its linear
input representation ��� � � ����� is obtained, and then the
reconstructed hidden representation �� � � � ����� is obtained
from which a competitive version ��� is obtained by assigning
activation values under a Gaussian envelope centred around
the winner. The bottom-up weights from units � to units � are
modified according to

����
�� � � ����

�� � ��� � � ��
�
�

with an empirically determined learning rate � � �
��. Learn-
ing rates 	 and � were decreased linearly to zero during the last
quarter of training in order to reduce noise. All weights � ��

and � �� were rectified to be non-negative at every learning
step and the bottom-up weights � �� of each hidden unit were
normalised to unit length.

The hidden layer of the associator network in Fig. 2 that
acted as the student robot’s cortex had 16 by 48 units. In the
wake phases of training it received multimodal inputs �� based
on observing the actions of the teacher robot performing the
three behaviours.

These multimodal inputs included first the higher-level
vision which represents the x and y coordinates and rotation
angle � of the teacher robot. The x, y and � coordinates in
the environment were represented by two arrays of 36 units
and one array of 24 units, respectively. For a close distance of
the robot to the nearest wall, the x position was a Gaussian of
activation centred near the first unit while for a robot position
near the middle of the arena the Gaussian was centred near
the last unit of the first column of 36 units. The next column
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Fig. 2. The associator model for robot imitation learning. A stimulus example is shown near each of the three input areas.

of 36 units represented the y coordinates so that a Gaussian
centred near the middle unit represented the robot to be in the
centre of the environment along the y axis. Rotation angles �
from ��	�� to �	�� were represented along 24 units with the
Gaussian centred on the centre unit if � � ��.

The second part of the multimodal inputs was the lan-
guage region on which representations of phonemes were
presented. This approach used a feature description of 46
English phonemes, as developed by partners in Cambridge
based on the phonemes in the CELEX lexical databases
(http://www.kun.nl/celex/). Each of the phonemes was repre-
sented by 20 phonetic features, which produced a different
binary pattern of activation in the language input region for
each phoneme. These features represent the phoneme sound
properties for instance voiced or unvoiced so similar phonemes
have similar structures. A region of 4 rows by 20 columns was
used to represent the words with the first row representing the
first phoneme and second row the second phoneme etc., so that
the order in which they appear in the word is maintained. For
words like ‘go’ that are described by less than four phonemes
there was no active units in the language region for the rows
not used, as displayed in Fig. 3. The coding of the language
input has been agreed with collaboration partners working in
linguistics and neuropsychology and also the words were taken
from a commonly agreed restricted dictionary.

g @ U p I k l I f t

Fig. 3. The phonemes and the corresponding 4�20-dimensional vectors
representing ‘go’, ‘pick’ and ‘lift’.

As final part of the multimodal inputs the teacher robot
motor directives were presented on the 4 motor units (forward,
backward, turn right and turn left) one for each of the possible

actions with only one active at a time. The activation values
in all three input areas were between 0 and 1.

During training the student robot received all the inputs,
however when testing, either the language area or the motor
inputs were omitted. The language input was omitted when
the student network was required to take the other inputs
that would be gained from observing the teacher robot and
recognise the behaviour that was performed. Recognition was
verified by comparing the units which are activated on the
language area via � �� (Fig. 2) with the activation pattern
belonging to the verbal description of the corresponding
behaviour. The motor input was omitted when the student
robot was required to perform the learnt behaviours based on
a language instruction. It then continuously received its own
current x, y and � coordinates and the language instruction
of the behaviour to be performed. Without motor input it had
to produce the appropriate motor activations via � �� which it
had learnt from observing the teacher to produce the required
behaviour.

IV. RESULTS AND DISCUSSION

The associator network imitation learning robot performed
well when recognising the behaviour being performed by
the teacher robot and performing the behaviour based on a
language instruction. Recognition was tested by the network
producing a phonological representation on the language area
which was compared to the appropriate language instruction.
As can be seen from Table I the associator model based robot
recognised the ‘go’ behaviour ��
��
 of time, the ‘pick’
behaviour ��
�
 and the ‘lift’ behaviour 	�
		
, while the
teacher robot was looping between the three behaviours as
done during training. The total count shows that the teacher
spends most time with the ‘go’ behaviour. Its false recognition
as ‘pick’ behaviour in ��
��
 of time can be explained with
the similarity of these two behaviours, but also with the



missing language input which would be strong compared to
the motor input.

TABLE I

PERCENTAGES OF CORRECT RECOGNITION OF BEHAVIOURS.

Recognising: ‘go’ ‘pick’ ‘lift’ Total Count

Performing ‘go’ 54.51% 44.26% 1.23% 746211

Performing ‘pick’ 3.08% 96.47% 0.45% 111495

Performing ‘lift’ 0.89% 12.23% 86.88% 142195

Furthermore, when considering if the trained student robot
was able to produce a certain behaviour requested by a
language input, the movement traces in Fig. 4 on the next
page show that when positioned in the same location the robot
performs these different behaviours successfully.

Fig. 5 indicates that the three behaviours are represented at
three separate regions on the hidden area. In contrast, the four
motor outputs are represented each at more scattered patches
on the hidden area (Fig. 6). This indicates that language has
been more dominant in the clustering process.

‘go’ ‘pick’ ‘lift’ all

Fig. 5. Trained weights ��� to four selected language units of the student
robot. Each rectangle denotes the hidden area, dark are strong connections
from the corresponding regions. Each of the three first units is active only at
one input, denoted above. The rightmost unit is active by all language words.

forward backward rightspce left

Fig. 6. The trained weights ��� to the four motor units of the student
robot. As in Fig. 5 the regions from which strong connections originate in
the hidden area are depicted dark.

The ability of the robot to both recognise an observed
behaviour and perform the behaviour that it has learnt by
imitating a teacher shows the model was able to recreate
some concepts of the mirror neuron system. The student
robot displays mirror neuron properties by producing similar
regional unit activation patterns when observing the behaviour
and performing it, as seen in Fig. 7. Furthermore, the achieved
common “action understanding” between the teacher and stu-
dent on the behaviour’s meaning through language corresponds
to findings in the human mirror neuron system whereby
language would be allowed to emerge.

V. FUTURE WORK

We will consider two future directions for the associative
imitation model. There is an intention to implement the model
on our MIRA and LENA robots based on the PeopleBot plat-
form (See Fig. 8). Our robots have on board PCs, microphones

‘go’ ‘pick’ ‘lift’
a)

b)

Fig. 7. Activations for the associator network summed up during short phases
while the student robot a) correctly predicts the behaviours and b) performs
them based on a language instruction.

and speakers and a PC104 audio board. They have adjustable
120-degree pan-tilt cameras, infrared sensors, sonars and 2-
degree grippers that contain break-beam sensors. By training
the neural network model on a simulator and then transferring
it on to the student MIRA robot this allows the use of many
more training examples than would have been possible had
we gone straight onto the MIRA and LENA robots. As stated
earlier the inputs selected are such that they can be obtained
by the student MIRA robot observing the teacher LENA robot
by using traditional or neural network based vision processing
techniques.

Fig. 8. Our two PeopleBot robots, LENA and MIRA.

An additional future direction of this research is to expand
the number of behaviours so that the student robot is able
to perform more actions related to grasping. In doing so
it is possible to expand on our previous work [27], [28]
that recreated the neurocognitive evidence of Pulvermüller
[17] on how the brain processes action verbs. Pulvermüller
found through brain imaging techniques that networks of cell
assemblies in the brain represent the word form and the
semantic feature of the word in such a way that those actions
performed by specific body parts share similar brain regions.
By using such an approach it will be possible to incorporate
into the model this knowledge on how the brain processes
action verbs.

VI. CONCLUSIONS

In this paper we described a model for robot imitation based
on the concepts of modularity in the brain and the mirror



‘go’ ‘pick’ ‘lift’

Fig. 4. The simulated trained student robot performance when positioned at the same point in the environment but instructed with different language input.
The robot was initially placed in the top middle of the arena facing upward. In the ‘go’ behaviour it moves around the arena; during ‘pick‘ it approaches the
middle of the top wall (target position) and then alternates between left- and right turns; during ‘lift’ it moves back and then keeps turning.

neuron system. The associator model combined multimodal
visual, language and motor inputs and was able to predict the
behaviour of the teacher robot and perform a behaviour based
on language instruction. This associator network goes beyond
previous imitation approaches that incorporate the concepts of
the mirror neuron system by using language instruction and
therefore integrating vision, language and motor control for
the human mirror neuron system. Finally, the model made use
of the concepts of modularity in the brain by different regions
representing each of the three behaviours for prediction and
performance.
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