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Abstract

This paper presents a complex preferences framework of integrating pulsed neural networks into

neural/symbolic hybrid approaches. In particular, we introduce an interpretation of neural codes as mul-

tidimensional complex neural preferences and preference classes which allow the integration of knowledge

from di�erent neural and symbolic models. We de�ne some basic operations on complex preferences and

preference classes that allow them to be directly integrated into symbolic models. Furthermore, we show

the interpretation of mean �ring rate, time-to-�rst-spike, synchrony and phase codes as complex neural

preferences and the interpretation of the operations on preference classes of these codes. To the best of

our knowledge this is the �rst work that addresses the integration of pulsed neural networks into hybrid

approaches, in particular the symbolic interpretation and simultaneous processing of mean �ring rate

and pulse coding schemes in a preferences framework.

1 Introduction

The development of hybrid models, integrating neural and symbolic approaches, has received a fair

amount of interest. Some signi�cant work has been done in this area [Medsker, 1995, Dor�ner, 1997] but

much less has been done on fundamental principles of neural/symbolic hybrid systems [Smolensky, 1988,

Sharkey and Jackson, 1995, Wermter, 1995].

Furthermore, most neural network models considered in hybrid approaches use the mean �ring rate as a

concept of encoding the information. Recently, however, there is an increasing amount of evidence from the

�eld of computational neuroscience which suggests that the �ring rate alone is not suÆcient for encoding

all the information that is processed in the real neural networks. Some of this evidence shows that the

neurons use alternative types of coding [Thorpe et al., 1996], while other research suggests that the neurons

can simultaneously process �ring rate and spatiotemporally encoded information [Araki and Aihara, 1999].

This evidence initiated experimental and theoretical work that outlines the computational limits of using

�ring rate alone and the advantages of using alternative or complimentary coding schemes in the framework

of pulsed neural networks [Maass and Bishop, 1999].

The integration of pulsed neural networks into the hybrid approaches is one of the priorities of our approach.

This paper presents an important step towards such an integration, theoretically addressing the fundamental

issue of symbolic interpretation of pulse neural codes and their combination with �ring rate code. Further-

more, we provide an introduction of the general concept of multidimensional complex neural preferences and

preference classes. The concept of preference classes allows a clear link to symbolic interpretations. Further-

more, we show how mean �ring rate, time-to-�rst-spike, synchrony and phase codes can be interpreted in

our new neural preferences framework.

2 Complex Neural Preferences

In previous work we have introduced preference-based processing [Wermter, 1999] and here we would like to

extend this work substantially towards integrating �ring rate and pulse coding schemes. While usually the

processing and representation in the brain are believed to be task-dependent, a common neural/symbolic

interpretation of the neural code is possible and crucial for hybrid systems.

De�nition 1 (Complex Preference, brie
y C-Preference) A complex preference of level l is repre-
sented by an l�m-dimensional matrix a 2 [0; 1]l�m.



The special case of a c-preference of level one is called simple neural preference, or just preference. As we will

show in the following sections, some single neural coding schemes can be interpreted as a simple preference, i.e.

an m-dimensional analog vector in [0; 1]m. Other single coding schemes can be interpreted as c-preferences

where the simple preference at each level represents a given internal state of the code. Furthermore, multiple

coding concepts can be integrated and can be simultaneously processed in a c-preference where each level

(or several levels) represent a single coding scheme.

De�nition 2 (Next Corner Reference) The next corner reference r(a) 2 f0; 1gl�m of the c-preference
a 2 [0; 1]l�m is determined for i 2 f1; : : : ; lg and j 2 f1; : : : ;mg as:

rij(a) =

�
0 if aij < 0:5

1 if aij � 0:5

The introduction of the next corner reference allows us to associate each c-preference with a particular corner

of the [0; 1]l�m hypercube, i.e. a discrete symbolic representation.

De�nition 3 (Preference Value of a C-Preference) A preference value of a c-preference a 2 [0; 1]l�m

with respect to its next corner reference r(a) is de�ned as:

pref(a) = 1� distance(a; r(a))
p
lm
2

, where distance(a; r(a)) =

sX
i;j

(aij � rij(a))2

is the distance between the c-preference a and its next corner reference.
p
lm=2 is the maximum distance in the l�m-dimensional c-preference space, that is the distance from the

center of the hypercube to any corner. If the c-preference a is close to its next corner reference then its

preference value pref(a) will be close to 1 and if it is close to the center then pref(a) will be close to 0.

For a neural interpretation the preference value is a measure of how far away a neural c-preference is from

the discrete representation indicating for example the strength of the neural response. For a more symbolic

fuzzy interpretation, the preference value is a measure of how far away a fuzzy set is from the corresponding

symbolic sharp set which represents the corner reference.

De�nition 4 (C-Preference Class) Let a 2 [0; 1]l�m be a c-preference with next corner reference r(a) 2
f0; 1gl�m. Then the class of complex preferences of a is called c-preference class c(a) and contains all those
c-preferences with next corner reference r(a), which have the same distance from r(a) as a.

The preference value of a class of c-preferences is the preference value of an arbitrary c-preference which

belongs to this class. This follows directly from the de�nitions of c-preference classes and the preference

value.

De�nition 5 (Order of C-Preference Classes) Let a; b 2 [0; 1]l�m be two c-preferences with common
corner reference r 2 f0; 1gl�m. Then the corner reference order of classes of c-references �pc is de�ned as
follows: c(a) �pc c(b), if distance(a; r) � distance(b; r).

Theorem 1 The corner reference order for c-preference classes is a partial ordering.

Directly applying the above de�nitions it is straightforward to show re
exivity, antisymmetry and transitivity

for the order of c-preference classes. Therefore, we ful�ll the minimum requirement for the de�nition of all

fuzzy sets with multidimensional goal domains.

We can also say that a class of c-preferences c(a) is unambiguously speci�ed by the pair (r(a); pref(a)),

where r(a) is the next corner reference of all c-preferences in the class and pref(a) is their preference value.

Furthermore, union and intersection operations can be speci�ed for c-preference classes.

De�nition 6 (Union of C-Preference Classes) The union of two c-preference classes (r(a); pref(a)) 2
[0; 1]l�m and (r(b); pref(b)) 2 [0; 1]l�m is a c-preference class (r(c); pref(c)) 2 [0; 1]l�m with reference
rij(c) = max(rij (a); rij(b)); i = 1 : : : l; j = 1 : : :m and preference value pref(c) = max(pref(a); pref(b)).

De�nition 7 (Intersection of C-Preference Classes) The intersection of two c-preference classes
(r(a); pref(a)) 2 [0; 1]l�m and (r(b); pref(b)) 2 [0; 1]l�m is a c-preference class (r(c); ref(c)) 2 [0; 1]l�m

with reference rij(c) = min(rij(a); rij (b)); i = 1 : : : l; j = 1 : : :m and preference value pref(c) =

min(pref(a); pref(b)).



 Stimulus applied

Global oscillation
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Figure 1: Examples of Pulse Codes: (A) Time-to-First-Spike Code. (B) Synchrony Code. (C) Phase Code.

3 Firing Rate Code in C-Preferences

The �ring rate hypothesis has been used in describing the behavior of neurons in many sensory [Adrian, 1926]

and cortical regions [Hubel and Wiesel, 1962]. It is based on the average spike count of a neuron in a given

time window. Extensions of this concept include averaging over a number of units or over several stimulation

repetitions. The mean �ring rate coding concept has been successfully applied to some computational neu-

roscience models and most of the connectionist models. Firing rate code can be modeled with simple neural

preference. In our previous work on neural preferences we have focused on �ring rate codes [Wermter, 1999],

which is why we emphasize pulse coding schemes in the following sections.

4 Time-to-First-Spike Code in C-Preferences

The Time-to-First-Spike coding paradigm is based on several analyses that most of the information about new

stimulus is presented during the �rst 20-50 ms of the neural response [Kjaer et al., 1994, Tovee et al., 1993].

The coding of this type assumes that the time between the stimulus and the �rst spike of the neuron represents

the strength of the response. The sooner the neuron �res, the stronger the response is. Respectively, a later

�rst spike will mean a weaker response to the stimulus (Figure 1.A).

Neural Preference of Time-to-First-Spike Code. Let us consider a neural assembly ofm neurons which

have been stimulated with a new input at time t0. We examine the spikes in the assembly in a time window�t.

Let ti be the time of the �rst spike of neuron i in the examination time window (t0 � ti � t0+�t; i = 1 : : :m).

We can de�ne the preference spike time of a neuron i as ai = 1� ti�t0
�t

. Then the vector (a1; a2; :::; am) is

the neural c-preference for the time-to-�rst-spike-encoded responses of the neural assembly. Neurons with

a stronger response to the stimulus will have values in the neural c-preference close to 1 and the ones with

weaker (negative) response close to 0. This type of coding can be presented in simple neural preferences.

Preferences with a higher preference value will represent de�nite responses of the neural assembly, positive

or negative. On the other hand, a low preference value will indicate that most of the neurons in the assembly

have �red around the middle of the time window and therefore do not show a de�nite response.

Neural Preference Classes of Time-to-First-Spike Code. The above speci�ed neural preferences

for the time-to-�rst-spike code will form a class of preferences that have equal strength as response to

the stimulus. We can abstract from the particular 
uctuations in the order of �ring on the neurons and

symbolically interpret their responses as either strongly positive/negative or no-de�nite-response. Then, the

class of preferences will contain all preferences that encode the same information with equal strength. The

result of the intersection of c-preference classes will present the minimal strength response of the assembly.

Respectively, the union will result in a maximum strength response.

5 Synchrony Code in C-Preferences

Neurons in many cortical and sub-cortical areas are found to �re synchronously during particular mental

or behavioral tasks [Eckhorn et al., 1990, Vaadia et al., 1995, Riehle et al., 1997]. This phenomenon is more

related to the internal functions in the brain rather than the responses to external events. One widely

accepted idea is that neurons with synchronized �ring with zero (or considered as zero) phase delay perform



temporal binding of individual features in order to represent complex objects (Figure 1.B). Furthermore,

with a time shift between the �ring of di�erent assemblies, information about complex events or group of

objects can be processed without crosstalk between individual representations.

Neural Preference of Synchrony Code. We can de�ne �t as the time window in which all spikes can

be considered as �ring synchronously. In a simple scenario this could be at least the time from the �rst to

the last spike of a given synchronous �ring of a neuronal assembly and is usually determined empirically.

Let ts be the mean time of �ring for all spikes in the de�ned time window �t. Then, we can consider all

spikes that have occurred in the time �t before ts and �t after ts, that is in a time interval 2�t. We de�ne

the preference spike time of neuron i as

ai =

�
1� jti�tsj

�t
if the neuron has �red in the time window 2�t

0 if the neuron has not �red in the time window 2�t

Here, ti is the �ring time of neuron i. Then the vector (a1; a2; :::; am) will be the c-preference vector for

the synchrony code of m neurons. Again this type of coding can be presented as simple preference. The

de�nition of ai ensures that neurons which �re closely to the mean spike time will have values close to 1.

In other words, higher density in the synchronous �ring will lead to higher values for the neurons in the

preference vector. This de�nition includes preference spike times of neurons that are not considered to be in

the current synchronous �ring. However, the values for such neurons will be less than 0.5 and usually close

to 0. This way, by altering �t we can combine the information encoded in multiple synchronous �rings in

one preference vector without causing confusion with the actual synchrony-encoded information.

The preference value will be higher if the neurons considered to �re synchronously have �red closely in time

and no other neurons have �red closely to that time (with respect to the given time window). On the other

hand, if the spikes of the synchronously �ring neurons are distributed with low density over the time window

and/or other neurons have �red close to the time window, the preference value will be low.

Neural Preference Classes of Synchrony Code. A neural preference class of a synchrony code can

be interpreted as a set of all preferences that represent the synchrony code for the same information with

equal strength. This interpretation of the classes allows us to abstract from the particular distribution of the

synchronous spikes in the time window usually considered as noise in biological systems. Furthermore, with

preference class operations like union and intersection we can operate with all features activated in multiple

synchronous �rings.

6 Phase Coding in C-Preferences

Global oscillations found in some areas of the brain are suggested to serve as a reference signal for neu-

rons that can encode information in the phase of the �ring times [Hop�eld, 1995, Jensen and Lisman, 1996,

Burgess et al., 1993]. In such a coding concept, neurons react to a new stimulus by adjusting the phase of

their spike with respect to the background oscillation. If the stimulus does not change over time, the neurons

carry on �ring with the same phase (Figure 1.C).

Neurons can also use the spikes from other neurons as a reference signal instead of global oscillation. In such

a scenario, called correlation coding, the information is encoded in the time shift between the �ring times

of a pair or group of neurons. The interpretation of the phase code as neural c-preferences can be directly

applied for correlation code.

Neural C-Preferences of Phase Code. Let us consider a pool of m neurons that use phase coding with

respect to a global oscillation with a time period �t. For each neuron we can de�ne l distinguishable phase

shifts of �ring. This will lead to l subintervals of �t so that �ring of that neuron in this subinterval will

represent a particular feature. We can de�ne the neural c-preference of the phase code over a representative

number of oscillation periods as a matrix p 2 [0; 1]l�m, where pij is the number of times neuron j has �red

in its subinterval i, normalized with respect to the total number of spikes registered for that neuron during

the observation. A representative number of oscillation periods could be one that ensures that the same

stimulus is presented more than once to the neurons during the observation. In such a scenario, a neuron

can be considered as responding with a phase code if it has �red with the same phase shift in most of the

oscillation periods.

A direct interpretation of the preference value of phase code states that c-preferences with a high value will



indicate a de�nite phase-encoded response of the neurons, and respectively, low preference value will indicate

less phase-encoded information or a high level of noise in the pool. Therefore, we can consider the preference

value as an indication of the strength of the neural response to a particular stimulus.

Neural C-Preference Classes of Phase Code. By constructing a class of neural c-preferences for a

phase code we can abstract from the symbolically indistinguishable 
uctuations in the neuron's �ring time.

The class will represent all c-preferences that encode the same object with the same strength of phase code.

Furthermore, by applying the intersection or union operations over such classes we can respectively extract

common features or extend the features of two di�erent phase-encoded objects or events.

7 Simultaneous Processing of Multiple Neural Codes

Neuroscience evidence suggests that many neurons in the brain are not restricted to only one type of coding.

These neurons are able to process di�erent aspects of the information simultaneously using complimentary

types of encoding. In fact many scientists believe that neurons use rate coding in parallel with a complimen-

tary type of pulse code [Hebb, 1949, Recce, 1999]. Indeed, such a processing scheme is highly plausible and

computationally e�ective, since without any signi�cant increase in the computational cost it can implicitly

combine the advantages of �ring rate and spatiotemporal codes.

Neural C-Preferences of Multiple Neural Codes. For presentational purposes we will discuss the

situation where neurons simultaneously use �ring rate and synchrony coding schemes. The concept presented

here, however, is general and can be applied to any combination of neural codes.

We would like to model the behavior ofm neurons. Both types of codes that these neurons use can be modeled

as simple preferences. Therefore we can specify the neural c-preference of this model as a matrix a 2 [0; 1]2�m,

so that the simple preference (a11; a12; : : : ; a1m) will represent the rate code and (a21; a22; : : : ; a2m) will

represent the synchrony code. Such an integration of c-preferences representing di�erent codes allows us to

have a uni�ed symbolic interpretation of a complex neural code. We can simultaneously process and combine

the information contained in the di�erent codes. The de�nitions of c-preference classes provide that there

will not be interference between the di�erent codes.

Following the common features of the preference value for single codes, we can interpret the preference value

of c-preferences of multiple codes as the strength of the neural response to the present stimulus.

Neural C-Preference Classes of Multiple Neural Codes. A class of neural c-preferences of multiple

neural codes will represent all c-preferences that encode a particular object with equal strength of the

response. Again, it allows us to abstract from the symbolically indistinguishable 
uctuations in neural

responses, and concentrate on the encoded objects/events and the strength of the representation.

The de�nitions of union and intersection of c-preference classes ensure that information from one type of

encoding will not interfere with the other type. Therefore, these operations applied to c-preference classes

of multiple codes will preserve the properties for each single code embedded into the c-preference classes.

8 Conclusion

We introduced the concept of complex preferences and c-preference classes as theoretical framework for sym-

bolic interpretation of di�erent neural codes. The corner preference order is a partial order and therefore

c-preference classes can serve as a basic link between neural and symbolic fuzzy representations. The frame-

work of complex neural preferences as symbolic interpretation of neural codes extends the scope of hybrid

models as integration of pulsed neural networks, mean �ring rate networks and symbolic approaches. For

instance, the use of the presented results allows pulse neural codes or multiple neural codes to be used in

symbolic models such as automata, sequential machines, fuzzy models, etc. To the best of our knowledge

this is the �rst work that addresses the integration of pulsed neural networks into hybrid approaches, in par-

ticular a symbolic interpretation and simultaneous processing of mean �ring rate and pulse coding schemes

in a preference framework.
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