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1 Abstract

Recently there has been a lot of interest in the extrac-
tion of symbolic rules from neural networks. The work
described in this paper is concerned with an evaluation
and comparison of the accuracy and complexity of sym-
bolic rules extracted from radial basis function networks
and multi-layer perceptrons. Here we examine the abil-
ity of rule extraction algorithms to extract meaningful
rules that describe the overall performance of a particu-
lar network. In addition, the research also highlights the
suitability of a specific neural network architecture for
particular classification problems. The research carried
out on the extracted rule quality and complexity also has
a direct bearing on the use of rule extraction algorithms
for data mining and knowledge discovery.

2 Introduction

The work described in this paper is concerned with an
evaluation of the accuracy and complexity of symbolic
rules extracted from radial basis function (RBF) net-
works and multi-layer perceptrons (MLP). RBF neural
networks [5] and MLP networks [4] are two of the most
widely used neural network architectures. RBF networks
are a localist type of learning technique [3]. Local learn-
ing systems generally contain elements that are respon-
sive to only a limited section of the input space. This
may entail separate storage in memory for each pattern
unless the representational elements are able to cover (as
in the case of RBF hidden units) a given area around the
input pattern.

This is quite different from the distributed approach of
MLP networks. MLP’s are able to store many patterns
within a limited memory, i.e. the learned patterns are
stored across all weights and thresholds. This property is
known as superposition and enables the efficient storage
and recall of individual patterns. However, both types
of networks are good at pattern recognition and are ro-
bust classifiers, with the ability to generalize in making
decisions about imprecise input data. They offer robust
solutions to a variety of classification problems such as

speech, character and signal recognition, as well as func-
tional prediction and system modeling where the physi-
cal processes are not understood or are highly complex.
The main difference is that RBF networks may require
more hidden units than MLP’s to represent the same
data set.

The local nature of RBF networks makes them a suit-
able platform for performing rule extraction. Here we
examine the ability of rule extraction algorithms to ex-
tract meaningful rules that describe the overall per-
formance of a particular network. The research car-
ried out on the extracted rule quality and complexity
also has a direct bearing on the use of rule extraction
algorithms for data mining and knowledge discovery.
Rule extraction is recognized as a powerful technique for
n]euro—symbolic integration within hybrid systems [15;
8].

To illustrate how different classifiers can partition the
data space and thereby produce varying accuracies, fig-
ure 1 shows the decision boundaries for a RBF and a
MLP network on a two class problem.
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Figure 1: Class decision boundaries

The MLP uses one or more hyperplanes to isolate the
classes. Hyperplanes may be positioned anywhere in in-
put space and can extend infinitely which leads to ex-
trapolation problems and causes complications during
rule extraction. The RBF network uses a local approach



which effects only a specific data point and perhaps a
small number of other points depending on the basis
function width.

The adjustable parameters within a radial basis function
network that effect classification accuracy and that may
provide information for rule-extraction are the number of
basis functions used, location of the centre of the basis
function, width of the basis function, and the weights
connecting the hidden RBF units to the linear output
units. Extracting rules from MLP networks is dependent
on the number of hidden units, the weight and threshold
values and the complexity of the learned target function.

This paper is structured as follows: Section three out-
lines the techniques used for rule-extraction from both
neural network types. Section four describes the experi-
mental results. Section five discusses the conclusions.

3 Rule Extraction from Neural
Networks

In this section we discuss motivations, techniques and
methodology for rule-extraction. The advantages of ex-
tracting rules from neural networks will be discussed
in ]general terms applicable to most neural networks [1;
12].

e The knowledge learned by a neural network is gen-
erally difficult to understand by humans. The provi-
sion of a mechanism that can interpret the networks
input/output mappings in the form of rules would
be very useful.

e Deficiencies in the original training set may be iden-
tified, thus the generalization of the network may
be improved by the addition/enhancement of new
classes. The identification of noisy training data for
removal would also enhance network performance.

e Analysis of previously unknown relationships in the
data. This feature has a huge potential for knowl-
edge discovery/data mining and possibilities may
exist for scientific induction.

Rule extraction has been carried out upon a variety of
neural network types such as multi-layer perceptrons [11;
6], radial basis networks [13], Kohonen networks [14] and
recurrent networks [10].

Rule extraction may be viewed in one of two ways, first it
can be seen as a technique for determining how the neu-
ral network performs any given input to output mapping.
Second, often the rule extraction process may produce
rules that are more accurate than the original neural
network. In the second case the extracted rules may

no longer provide a faithful reproduction of the original
networks operation. However, this loss of fidelity is com-
pensated for by an increase in classifier accuracy. Work
][O}j Fu has given insights into how this phenomena occurs
7].

3.1 RBF rule extraction by RULEX

The algorithm implemented for the extraction of rules
from RBF networks is similar to the RULEX algorithm
[2]. The local nature of each RBF hidden unit enables a
simple translation into a single rule.

IF Feature; is TRUE AND

IF Features is TRUE AND

IF Feature, s TRUE

THEN Class, (1)

where a Feature is composed of upper and lower bounds
calculated by the RBF centre u,, positions, RBF width
o and feature “steepness” S. The value of the steepness
was discovered empirically to be about 0.6 and is related
to the value of the width parameter. The values of
and o are determined by the RBF training algorithm.

Xupper =p;+0o;— S (2)
Xiower = pi — 0; + S (3)
where:

= n-dimensional centre location
o = width of receptive field

Input:
Hidden weights p (centre positions)
Gaussian radius spread o
Steepness S
Output:
One rule per hidden unit
Procedure:
Train RBF network on data set
For each hidden unit
For each u;
Xiower = i — 03 + S
Xupper =W, +o; — S
Build rule by:
antecedent = [Xjoyer; Xupper)
Join antecedents with AND
Add Class label
Write rule to file

Figure 2: RBF rule-extraction algorithm

3.2 MLP rule extraction by VIA

Validity interval analysis (VIA) extracts propositional
IF. THEN type rules from pre-trained feedforward,



multi-layer perceptron (MLP) networks [11]. It uses the
network parameters i.e. the weights and threshold val-
ues in conjunction with constraining values at the input
and output units. VIA is a general purpose algorithm
that assumes that the network consists of a feedforward
architecture with continuous activation functions. VIA
is based on the propagation of intervals of min-max val-
ues through monotonic real-valued functions [9]. The
intervals specify the valid range of activation values a
particular neuron may take. Although each hidden unit
undergoes the VIA process individually, the extracted
rules are based on the networks overall input to output
mapping response. Some rule extraction techniques de-
compose a network into a number of sub-networks and
merge the extracted rules after pruning the network ar-
chitecture.

The VIA algorithm consists of two phases: a for-
ward phase whereby interval constraints are propagated
through the network, and a backward phase where the
initial intervals are refined within tighter limits. The
propagation of intervals during the backward phase is
accomplished by using the simplex algorithm which is a
linear programming technique.

The original intervals are refined by propagating them
backwards through the network. Thrun viewed the prob-
lem of refinement as a linear programming exercise. This
allows the arbitrary linear constraints to be incorporated
into the calculation of the validity intervals. The back-
ward propagation of activation intervals allows the cal-
culation of tighter validity intervals. The whole process
can therefore detect general conditions upon the output
units i.e. more maximally generally rules than would be
the case with only forward propagation. The Simplex al-
gorithm is used to refine the initial intervals, constraints
are placed upon these intervals i.e. one input is changed
while the others are held constant. The Simplex is fed
with this data and the routine should converge prov-
ing the changed interval is consistent with the others.
Otherwise, a contradiction is generated because the new
interval is not consistent with the networks weights and
biases. This means that a lower bound has exceeded its
upper bound.

4 Experimental Results

The data sets we used comprised a benchmarking data
set, namely, the exclusive-or (XOR) dataset and Fish-
ers’s iris data set. The XOR dataset is a linearally insep-
arable, two class problem. However, to convert this prob-
lem from a Boolean to a continuous domain we added
noise to the XOR dataset to produce 400 patterns. The
iris data set consists of three classes of flowers with 50
patterns each. One class is linearly separable while the
other two are not. Figure 5 shows the results of the rule
extraction process in terms of number, accuracy and do-
main coverage of the rules. The coverage of the rules is

based upon their accuracy in describing the operation of
the neural network. Also the test results for the original
neural networks are given.

Figure 3 is an example of a rule extracted from an RBF
network trained on the Iris dataset. The antecedents
consist of upper and lower bounds that must be present
for the rule to be correct. The antecedent names describe
the iris features, where SL and SW refer to sepal length
and sepal width. PL and PW refer to petal length and
petal width. Figure 4 shows a rule extracted from an

Rule 1

IF (SL > 6.87 AND < 7.3) AND
IF (SW > 2.77 AND < 3.22) AND
IF (PL > 5.67 AND < 6.12) AND
IF (PW > 1.87 AND < 2.32)
THEN..Virginica

Figure 3: Rule extracted from RBF network

MLP network trained on the Iris dataset. These rules are
similar to the RBF rules since they both consist of upper
and lower bounds. The original boundaries discovered by
VIA.

Rule 1

IF SL[0.62 - 10.00] AND

IF SWJ[0.00 - 7.69] AND

IF PL[0.71 - 2.52] AND

IF PWJ1.05 - 4.92]

THEN VIRGINICA[0.80 - 1.00]
THEN SETOSA[0.00 - 0.00]

THEN VERSACOLOR][0.010 - 0.02]

Figure 4: Rule extracted from MLP network

The RULEX approach produced reasonably accurate
rules that were faithful to the original networks oper-
ation. The number of rules generated is based on the
number of RBF units present, therefore the more com-
plex dataset will tend to produce larger networks and
hence more rules. However, the network architecture
can be used to anticipate the number of extracted rules.

Using VIA to refine the intervals e.g. on the XOR
dataset, four rules were derived. Many more were gen-
erated but with VIA it is possible to determine the most
generally maximum rules. As with rules extracted from
RBF networks, increased dataset complexity produces
more rules. However, because of their distributed rep-
resentation MLP networks require fewer hidden units.
This means that the network architecture cannot be used
as an indication of the number of potential rules to be
extracted.



Figure 5: Results of classifier accuracy on data sets

Classifier Number of Number of Accuracy (%) Accuracy (%) Rule coverage Hidden units
rules Iris rules XOR Iris XOR XOR/Iris(%) XOR/Iris
RBF network — - 98 100 - 20/53
MLP network — - 98 100 - 2/2
RBF rules 53 20 100 100 100/100 -
MLP rules 85 4 80 96 100/80 -

5 Conclusions

It is clear from the experimental work that more Iris
rules are extracted from MLP networks than RBF net-
works. However, the XOR dataset having a simple and
regular structure required fewer rules when represented
by an MLP. The number of extracted rules can be very
large for those MLP networks that have learned a com-
plex mapping function. The actual coverage of the input
space becomes very difficult and is reliant on the test-
and-generate process for maximum coverage. It is likely
that a number of rules describing nonlinear class fea-
tures near hyperplane boundaries will be missed. This
aspect will become more difficult with increasing dataset
complexity. One facet of MLP rule extraction not inves-
tigated here would be to discover the effect of varying
the number of hidden units within the MLP network.

Since each RBF unit compiles into a single rule, the rule
extraction process is guaranteed to obtain all valid rules.
The complexity and size of the rule set is therefore based
directly on the number of RBF units within the network.
The number of RBF units is determined by the training
algorithm. The advantage of extracting rules from RBF
networks is the certainty that the entire input space of
the original network is covered. However, since RBF net-
works represent a local solution the extracted rules may
not reflect the overall trend of the data set. The main
advantage in extracting rules from RBF networks over
MLP networks is the simplicity, accuracy and efficiency
of the extraction algorithm.
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