
Neural Fuzzy Preference Integration using Neural Preference

Moore Machines

Stefan Wermter

University of Sunderland

Centre of Informatics, SCET

St. Peter's Way

Sunderland SR6 0DD, United Kingdom

Email: stefan.wermter@sunderland.ac.uk

Phone: +44 191 515 3279

Fax: +44 191 515 2781

http://www.his.sunderland.ac.uk/�cs0stw/

Keywords: Neural preference Moore machines, Neuro/fuzzy integration, Neural preferences,

Moore machines, Hybrid systems

1



Abstract

This paper describes preference classes and preference Moore machines as a basis for

integrating di�erent hybrid neural representations. Preference classes are shown to pro-

vide a basic link between neural preferences and fuzzy representations at the preference

class level. Preference Moore machines provide a link between recurrent neural networks

and symbolic transducers at the preference Moore machine level. We demonstrate how

the concepts of preference classes and preference Moore machines can be used to interpret

neural network representations and to integrate knowledge from hybrid neural represen-

tations. One main contribution of this paper is the introduction and analysis of neural

preference Moore machines and their link to a fuzzy interpretation. Furthermore, we il-

lustrate the interpretation and combination of various neural preference Moore machines

with additional real world examples.

2



1 Introduction

Previously, there has been a lot of work on hybrid neural integration and combination

[Reilly and Sharkey, 1992, Miikkulainen, 1993, Yager, 1994, Wermter, 1995, Medsker, 1995,

Wermter et al., 1996, Dor�ner, 1997]. Currently, it is an open question whether neural

or symbolic approaches alone will be suÆcient to provide a general framework for intelli-

gent performance, e.g. for processing natural language [Dyer, 1991, Honavar and Uhr, 1994,

Sun and Bookman, 1995, Wermter and Sun, 2000]. Therefore, hybrid neural approaches -

which allow a vertical integration of principles from neuroscience and neural networks with

symbolic interpretations - are currently examined and this paper is a contribution to this

hybrid neural integration.

Hybrid neural/symbolic representations have been found advantageous in some con-

texts since di�erent mutually complementary properties can be combined [Medsker, 1995,

Wermter et al., 1996, Dor�ner, 1997]. Symbolic representations have advantages with re-

spect to easy interpretation, explicit control, fast initial coding, dynamic variable binding

and knowledge abstraction. On the other hand, neural representations show advantages for

gradual plausibility, learning, robust fault-tolerant processing, and generalization for new sim-

ilar input. Since these advantages are mutually complementary, a hybrid neural architecture

can be useful if di�erent processing strategies have to be supported [Wermter et al., 1996].

Hybrid neural/symbolic methods have been shown to be able to reach a level where they

can actually be further developed in real-world scenarios. A combination of symbolic and

neural representations is possible in various hybrid processing architectures, which contain

both symbolic and neural modules appropriate to a speci�c task [Wermter, 1997].

A loosely coupled hybrid architecture has separate symbolic and neural modules. The control

ow is sequential in the sense that processing has to be �nished in one module before the next

module can begin. Only one module is active at any time and the communication between

modules is unidirectional. An example architecture where the division of symbolic and neural

work is loosely coupled has been described in a model for structural parsing within the SCAN

framework [Wermter, 1995] combining a chart parser and feedforward networks. There are

several other loosely coupled hybrid processing architectures for semantic analysis of database

3



queries [Cheng et al., 1994] or dialog processing [Jurafsky et al., 1994].

A tightly coupled hybrid architecture contains separate symbolic and neural modules, and con-

trol and communication are via common internal data structures in each module. The main

di�erence between loosely and tightly coupled hybrid architectures is common data struc-

tures which allow a bidirectional exchange of knowledge between two or more modules. For

instance, systems for neural deterministic parsing [Kwasny and Faisal, 1992] and inferencing

[Hendler, 1991] have been built where the control changes between symbolic marker passing

and neural similarity determination.

In an integrated hybrid architecture there is no discernible external di�erence between sym-

bolic and neural modules, since the modules have the same interface and they are em-

bedded in the same architecture. The control ow may be parallel and the commu-

nication between symbolic and neural modules is via messages. Communication may

be bidirectional between many modules, although not all possible communication chan-

nels have to be used. One example of an integrated hybrid architecture was devel-

oped for exploring integrated hybrid processing for spontaneous spoken language analysis

[Wermter and L�ochel, 1996, Wermter and Weber, 1997, Wermter and Meurer, 1997].

Besides all this work on hybrid neural/symbolic integration for certain applications there is

very little work towards more general rigorous models of neural interpretation and symbolic

integration. Much work has been guided by the particular application at hand. While it is

very useful to integrate extensive task and domain knowledge into a system, there is a lack

of more general interaction across di�erent models and applications.

We aim at addressing this lack of principles for neural symbolic integration. In earlier work

we have suggested preference Moore machines as one possible way of hybrid neural integration

[Wermter, 1999]. In this article we build on this work and provide the detailed theoretical

background for preference Moore machines, preference classes and their relationship to neural

and symbolic representations. The paper is structured as follows. First we introduce the

general concept of multidimensional neural preferences. The work and communication of

neural networks relies on such multidimensional preferences. For ranking di�erent preferences

we introduce a new reference order and demonstrate that this order compares favorably with

4



previously used orders like the dominance order.

Then we relate multidimensional neural preferences to multidimensional fuzzy set represen-

tations and show that the corner preference order on preference classes is a partial order.

This allows us to rank di�erent neural preferences and provides a basic link between neural

preferences and symbolic fuzzy representations at the preference class level.

Then we introduce preference Moore machines and relate traditional symbolic transducers

and recurrent networks to preference Moore machines. Preference Moore machines can be

interpreted as a basic building block for neural network architectures as well as for symbolic

architectures. Preference Moore machines provide a link between various recurrent networks

and symbolic transducers at the preference Moore machine level.

Finally, we introduce operations like intersection and union on preference classes and prove

that these operations on preference classes are commutative, associative and monotonic. Fur-

thermore we give a general example of the integration based on preference classes. These

operations provide a link between several neural or symbolic modules at the system architec-

ture level. Finally we illustrate a various preference Moore machines with concrete examples,

including from the Reuters news classi�cation.

2 Neural Preferences and their Preference Value

Arti�cial neural networks receive analogous input from a number of network units (input

layer) and they produce output to a number of network units (output layer). This motivates

us to describe their external interface by a general multidimensional preference for input

and/or output.

2.1 Preference, Preference Mapping and Order of a Preference

In this section we will describe the basic concepts of a preference and the order of a preference

based on the concept of a layer of units in a network.

De�nition 1 (Preference) A preference is a continuous representation which is represented

by an m-dimensional vector p 2 [0; 1]m.

5



De�nition 2 (Preference Mapping) A preference mapping is a mapping between prefer-

ences: [0; 1]n ! [0; 1]m, with n, m positive integer.

Such a preference mapping could be a transformation of the input or a prediction of the next

input based on the current input.

After we have de�ned a preference the question arises how we can rank preferences according

to their strength. Thus, we need to specify an order for m-dimensional preferences in [0; 1]m.

Within this m-dimensional space we will consider a preference as being large if the values of

the individual vector elements are close to 1 or 0. In contrast, we will consider a preference

as being small if the values of the individual vector elements are close to 0:5. This is our goal

criterion for determining a partial order on preferences. In the subsequent sections we will

consider di�erent alternatives for eventually determining an appropriate preference order for

m-dimensional preferences which relies on our goal criterion for ranking preferences.

2.2 Dominance Order of Multidimensional Preferences

We want to determine an appropriate preference order in [0; 1]m and have to �nd a useful

partial order1 in [0; 1]m. A simple generalization of the order � from [0; 1] to [0; 1]m is possible

with the dominance order. This m-dimensional order has already been widely used, for

instance for certain applications in fuzzy reasoning [Kosko, 1992]. Therefore, we will consider

this dominance order as a �rst alternative and will explain why the common dominance order

is not yet suÆcient for our preferences.

De�nition 3 (Dominance Order) Let a = (a1; � � � ; am), b = (b1; � � � ; bm) be two m-

dimensional preferences from [0; 1]m. Then the dominance order �dom is de�ned as

(a1; � � � ; am) �dom (b1; � � � ; bm), if ai � bi for all i 2 f1; � � � ;mg. Here � is the usual or-

der on real numbers.

That is, a preference a from [0; 1]m is greater or equal to a preference b from [0; 1]m, if each

element ai of a is greater than or equal to each corresponding element bi from b. For instance

it holds: (0:9 0:8) �dom (0:5 0:6) but also (0:5 0:5) �dom (0:1 0:1) However, as we speci�ed

1A relation is a partial order, if it is reexive, antisymmetric and transitive.

6



above in section 2.1, our goal criterion states, that values close to 1 or 0 from the interval

[0; 1] represent a large preference, values close to the center 0:5 a small preference. That is,

a preference close to 1 or 0 is more reliable than a preference close to 0:5. As shown in the

previous example, this is not the case for the dominance order since (0:5 0:5) �dom (0:1 0:1).

Therefore, we cannot use this generalization of the usual order to the dominance order for

our partial ordering of preferences.

Furthermore, for the dominance order it would also hold: (0:9 0:1) and (0:6 0:4) are not

comparable because 0:9 > 0:6 and 0:1 < 0:4. However, in this case (0:9 0:1) is clearly the

larger preference for (1 0). For a gradual, plausible and robust processing we want to support

the better preferences. Therefore it is necessary that such preferences are comparable. This

is another reason why we do not want to use this well known dominance order as a simple

generalization of the usual order. Therefore we consider a di�erent order which comes closer

to our goal criterion.

2.3 Maximum Value Order

A di�erent approach for determining an order in [0; 1]m is to determine the larger preference

using the largest sum of the di�erences of all preference elements from the maximum value.

De�nition 4 (Maximum Value Order) Let a = (a1; � � � ; am), b = (b1; � � � ; bm) be two

m-dimensional preferences from [0; 1]m. Then the maximum value order �mv is de�ned as

(a1; � � � ; am) �mv (b1; � � � ; bm), if ai � aj for all j 6= i and bk � bl for all l 6= k and
P

j;j 6=i
(ai�

aj) �
P

l;l 6=k
(bk � bl). Here � is the usual order on real numbers.

We consider our example from the dominance order. In contrast to the dominance or-

der (0:9 0:1) and (0:6 0:4) are now comparable for the maximum value order and it

holds: (0:9 0:1) �mv (0:6 0:4), because 0:9 � 0:1 > 0:6 � 0:4. However, it also holds

(0:9 0:8) =mv (0:5 0:6), because the distance from the maximum value is equal in both

cases (0:9� 0:8 = 0:6� 0:5 = 0:1), although (0:9 0:8) is clearly the larger preference for (1 1).

Therefore, �mv is closer to our desired order but not yet quite appropriate for supporting

multidimensional preferences since such clear di�erences cannot yet be considered. Therefore

this order does not yet ful�ll our goal criterion.

7



2.4 Reference Order

The dominance order and maximum value order do not yet ful�ll our goal criterion that values

close to 1 or 0 in the interval [0; 1] should support a larger preference, and values close to

0:5 a smaller preference. A larger preference in m-dimensional space can be de�ned by using

a larger distance from a reference. Therefore, we de�ne a preference a as being larger than

another preference b, if a has a smaller distance to a reference.

De�nition 5 (Reference Order) Let a = (a1; � � � ; am), b = (b1; � � � ; bm) be two m-

dimensional preferences from [0; 1]m and a reference r = (r1; � � � ; rm) from [0; 1]m. Then

the reference order �r is de�ned as: (a1; � � � ; am) �r (b1; � � � ; bm), if jr � aj � jr � bj. Here

� is the usual order on real numbers and jr � aj =
p
(r1 � a1)2 + � � � + (rm � am)2 is the

Euclidean distance of the preference a to the reference r.

It is possible to determine multiple references, for instance the corner references from f0; 1gn.

These corner references are particularly interesting since they allow a direct symbolic inter-

pretation of the discrete vector values.

De�nition 6 (Corner Reference Order) If r is a corner reference r = (r1; � � � ; rm) 2

f0; 1gm, then the reference order �r is based on the distance of two preferences from this

corner reference. We call this special form of the reference order the corner reference order.

That is, referring to a corner reference r, a preference a is greater than or equal to a preference

b, if the distance of a to r is smaller than or equal to the distance of b to r. The corner reference

can be interpreted as a strict sharp preference. Furthermore, for speci�c tasks one can chose

certain subsets of corner preferences from the 2m possible corner references. For instance, for

disambiguations one may be interested in the corner references which have one vector element

equal to 1 and all other elements equal to 0. Below we will specify that ref(a) is the next

corner reference with minimal distance to a currently considered preference a. We de�ne in

detail:

De�nition 7 (Next Corner Reference) The next corner reference ref(a) 2 f0; 1gm,

which is closest to a 2 [0; 1]m is determined for i 2 f1; � � � ;mg as:

8



ref(a)i = 0; if ai < 0:5

ref(a)i = 1; if ai � 0:5

We consider our example which we used for the dominance order and the maximum value

order: Now (0:9 0:1) and (0:6 0:4) are comparable and (0:9 0:1) �r (0:6 0:4), because (0:9 0:1)

is closer to the next corner reference (1 0) than (0:6 0:4) to (1 0). Furthermore it holds:

(0:9 0:8) �r (0:5 0:6), because the distance of (0:9 0:8) to (1 1) is smaller than the distance

of (0:5 0:6) to a corner reference. Therefore the corner reference order ful�lls the desired

properties. The closer a preference is to a corner reference the greater the preference.

2.5 Preference Value of a Preference

Now we want to assign a preference value from the interval [0; 1] to each preference a related

to its next corner reference r in the m-dimensional space:

De�nition 8 (Preference Value of a Preference (Strength of a Preference))

Let ref(a) be the next corner reference for a preference a in m-dimensional space. Let

distance(a; ref(a)) be the Euclidean distance between a and ref(a). Then we de�ne the

preference value of a preference a with respect to ref(a) as:

prefref(a)(a) = 1� distance(a; ref(a))
p
m

2

p
m=2 is the maximum distance in m-dimensional space to the next corner reference, that is

the distance from the center to the corner references. Therefore the values of prefref(a)(a)

are between 0 and 1. If a is close to its next corner reference ref(a), then prefref(a)(a) is

close to 1. If a is close to the center reference (0:5; � � � ; 0:5), then prefref(a)(a) is close to 0.

Figure 1 shows the preference values for the two-dimensional space. For each two-dimensional

preference (x y) the corresponding preference value z is shown. In general, the value

prefref(a)(a) has been given as the preference value of a preference a referring to a refer-

ence ref(a). For instance, a preference can represent the representation of a categorization.

Then the preference value would specify how strong a certain category assignment would be.

9



AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

0

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9 1

0

0,1

0,2

0,3

0,4
0,5
0,6
0,7
0,8
0,9
1

A
AA
AA

AAA
AA
A
A

AA
AAAAA
A
AA
A
AA
AA

A
AAAA
AA
AA
AA
AA
AAA

AA
AA
AAAA
AA

AA
AA

AA
AAA
AAAA

AA
AA
AA
A
AA

AAA
AAAAA
AA
AAA
AA
A
A
A
A

AAAA
AA
AA
AA
AAAA
AA

AAA
AA
AAAA
AA

AAA
AA
AAA
AAA
A

AAA
AAA
A
AA
AAA
AA
A
AA
AA
AA
AA
AA

AA
AAAAA

AA
AA
AAA
AAA
AAAA

AAA
AA
AA
AA
AA

AAA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AAAA
AA

AA
AA
A
AAA
AA

A
A
AA
AA
AA

AA
AA
AA
A
A

AA
AAA
A
AAA
AAAA
AA

AAA
AAA
A
AAA
AA
AAA
AA
A
A
AA
AA

AAA
AAA
A

AAAA
AAA
AAA
AAAA
AAAA
AA
AAAA
AA

AAAA
AA
AAA
AAA
AA
AA

AAA
AAA
AAA

AA
AA
AA

A
A
A
A
AAA
AA

AA
AAAA
AA
AA
AAA
AA

AAA
AAAA
AA

AA
AAAA
AAAA

AA
AAAA
AAA

A
AAA
AAA

AA
AAAA
AAA

AAAA
AAA
AAA

AAA
AAAA

AAAA
AAA
A

AA
AA

AAA
AAAA
AA
AAA

AA
AAAA
A
AAA
A
A
AA
AA
AA
AA
AAA
AAAAAAAAAAAAAAAA
AA
AA
AA
AA
AA
A
AAAA
AA
AAAAA
A
AAAAA

AAA
AAA

AA
AAA

AA

A
AAAA

A

A
A

AA
AAA
A

AAAA
AA
AAAA

AA

AA
AA
AA
AA
AAAA
AA
AA
AA
AA
AA
AA
AAAAAAAA
AA
AAA
AAAAAAAAAAAA
AA
AA
AA
AA
AAAA

A
A
A
A

AAA
AAAA
AA
A

AA
AA

AAA
AAA
AAA
AA
A
A
AAA
AA
AA
AA
AA
AAAAA
AA
AA
AA
AA
AAAAAAAAAAA

AAA
AA
AAAA
AA

AAAA
AAA
AAAA

AAA
AAAAA
AAA
AAAA
AAAAAAAA
AA
AA
AAA

A
A

AA
AAA

AA
A
A

A
A

AA
AAA
A

A
A
AA
AA
AAA

AAA
AA
AA
AA
AA
AAA
AAA
AA
AA

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

x

y

z

Figure 1: Preference values z of two-dimensional preferences (x y)

10



3 Neural Preferences and Fuzzy Set Representations

In the previous section we have de�ned neural preference and preference value in a general

manner and we have explored several alternatives for a partial ordering on these preferences.

The preference value of a preference describes the strength of this preference. In this section

we want to explore the relationship between neural preferences and multidimensional fuzzy

set representations. Since fuzzy set theory [Zadeh, 1965] is a well-established symbolic theory

the relationship between neural preferences and fuzzy representations can help to develop

principles of interaction between neural representations and symbolic representations. Before

we focus on these relationships in more detail we briey summarize some terminology from

fuzzy set theory.

3.1 Terminology in Fuzzy Set Theory

In this section we summarize some important terms of fuzzy set theory [Zadeh, 1965,

Klir and Folger, 1988]. These will serve as a basis from which we start our subsequent de-

velopment of new concepts and relationships. To clarify the terms we summarize underlying

well-known concepts.

De�nition 9 (Fuzzy Set) Let X be a universal set. Then the membership function mA has

the form mA : X ! [0; 1] and de�nes a fuzzy set A. [0; 1] is the inclusive interval of real

numbers from 0 to 1.

Example: X = f0; � � � ; 100g and mold is a function X ! [0; 1], for which each element

from X is assigned a value from [0; 1]. For instance, mold(3) = 0:0, mold(50) = 0:1 and

mold(80) = 0:95. A person with the age 80 belongs with a membership value of 0:95 to the

old persons, a person with the age 3 only with a membership value 0:0. Figure 2 shows

a graphical representation of three di�erent membership functions, which are modeled by

simple triangle functions.

De�nition 10 (Union of Fuzzy Sets) The union of two fuzzy sets A and B is a fuzzy set

A[B. A possible membership function is mA[B(x) = max[mA(x);mB(x)]. Another possible

membership function is mA[B(x) = mA(x) +mB(x)�mA(x) �mB(x).

11



young medium old

age

1

0

Membership

Figure 2: Fuzzy sets in one-dimensional space

In general there are basic axioms which must be ful�lled by operations for fuzzy union and

which are summarized below:

Axiom 1 (Union of Fuzzy Sets) The union of two fuzzy sets A and B is de�ned by a

function U : [0; 1] � [0; 1]! [0; 1], which assigns each pair of membership degrees mA(x) and

mB(x) a membership degree mA[B(x) = U(mA(x);mB(x)), which belongs to an element of

the union of A and B. U must obey the following axioms:

U1: U(0; 0) = 0; U(0; 1) = U(1; 0) = U(1; 1) = 1, that is, U is like the union of sharp sets.

U2: U(a; b) = U(b; a), that is, U is commutative.

U3: If a � b and c � d, then U(a; c) � U(b; d), that is, U is monotonic.

U4: U(U(a; b)c) = U(a; U(b; c)), that is, U is associative.

Here a, b, c are membership degrees mA(x) = a, mB(x) = b and mC(x) = c for x 2 X.

De�nition 11 (Intersection of Fuzzy Sets) The intersection of two fuzzy sets A and B

is a fuzzy set A \ B. A possible membership function is mA\B(x) = min[mA(x);mB(x)].

Another possible membership function is mA\B(x) = mA(x) �mB(x).

12



Again, there are basic axioms which must be ful�lled by operations for fuzzy intersection and

which are summarized below:

Axiom 2 (Intersection of Fuzzy Sets) The intersection of two fuzzy sets A and B is de-

�ned by a function I : [0; 1] � [0; 1] ! [0; 1], which assigns each pair of membership degrees

mA(x) and mB(x) a membership degree mA\B(x) = I(mA(x);mB(x)), which belongs to an

element of the intersection of A and B. I must obey the following axioms:

I1: I(1; 1) = 1; I(0; 1) = I(1; 0) = I(0; 0) = 0, that is, I is like the sharp intersection.

I2: I(a; b) = I(b; a), that is, I is commutative.

I3: If a � b and c � d, then I(a; c) � I(b; d), that is I is monotonic.

I4: I(I(a; b)c) = I(a; I(b; c)), that is I is associative.

Here a, b, c are membership degrees mA(x) = a, mB(x) = b and mC(x) = c for x 2 X.

3.2 Neural Preferences, Preference Classes and Multi-dimensional Fuzzy

Sets

For focusing on the relationships between neural and fuzzy representations we consider a

feedforward neural network and an elementary membership function of a fuzzy set. Let the

input vector for such a network be a vector from [0; 1]n, which is mapped by the network

to a single element from [0; 1]. For fuzzy sets, a tuple from [0; 1]n can be the input for a

membership function which maps to the interval [0; 1]. Then the activation value of a neural

output element can be interpreted as the fuzzy value of a membership function. That is, at

�rst we can identify a relationship between fuzzy representations and neural representations

which refers to the interpretation of the single output element.

In the more general case, however, it must be possible to interpret networks with multiple

output elements. Therefore we need to generalize fuzzy representations in such a manner that

an n-dimensional input tuple can be assigned an m-dimensional value (see �gure 3). This

fundamental basis of fuzzy representations and neural representations is supported by the fact

that both fuzzy sets and neural network vectors can be interpreted as points inm-dimensional

space [0; 1]m.

13



network with weights

membership function

n-dimensional
intput vector

n-dimensional
input tuple

m-dimensional output vector

m-dimensional value

Figure 3: Relationship between fuzzy sets and neural networks as a preference mapping into

a multi-dimensional set

How can we associate the preference value of a preference from section 2.5 with fuzzy sets

and neural networks? An m-dimensional preference can be seen as an m-dimensional vector

of a neural network as well as an m-dimensional fuzzy set. For a neural interpretation the

preference value is a measure of how far away a neural preference is from a discrete symbolic

corner vector, which represents the corner reference. For a fuzzy interpretation the preference

value is measure for how far away a fuzzy set is from the corresponding symbolic sharp set

which represents the corner reference.

The preference value of a preference can be viewed as a generalization of a membership

function of a simple one-dimensional set to an m-dimensional set of preferences. Simple

membership functions for one-dimensional sets are for instance triangle functions, which are

de�ned in an overlapping manner on one-dimensional sets (e.g. age, height, etc. See also

�gure 2). If we compare �gures 1 and �gure 2, in each �gure we can see a number of

overlapping fuzzy sets which determine the membership value of an element of the domain set.

If the preference value is high, then the preference is close to the corner reference and therefore

the fuzziness is small. On the other hand, if the preference value is low then the preference

is far away from the corner reference and the fuzziness is large. Because the preference can

be an output vector of a neural network, the preference value (and the membership value)

14



of an m-dimensional vector for a corresponding symbolic sharp set can be determined by the

learning in a neural network.

For each preference inm-dimensional space we can specify a preference value in [0; 1]. Because

of the de�nition of the corner reference order and the de�nition of the preference value, only

preferences with the same corner reference can be compared. This property is useful, since

preferences (0:9 0:3) and (0:3 0:9) for di�erent references (1 0) and (0 1) would provide

the same preference value pref(1 0)(0:9 0:3) and pref(0 1)(0:3 0:9) but it cannot be decided

whether (0:9 0:3) or (0:3 0:9) are greater, since these preferences belong to di�erent corner

references. It is only possible to compare preferences which have the same corner reference.

Those preferences which have the same distance to the same corner reference are judged as

equal, for instance (0:9 0:8) and (0:8 0:9), because pref(1 1)(0:9 0:8) = pref(1 1)(0:8 0:9). It

is not possible to determine which of these preferences is greater and closer to the corner

reference (1 1).

Our previous de�nition of the corner reference order is not yet a partial order. However, a par-

tial order is a minimum requirement for the de�nition of all fuzzy sets with multi-dimensional

goal domains [Klir and Folger, 1988]. The corner reference order is already transitive and

reexive, but it is not antisymmetric. For antisymmetry it must hold: if x �r y and y �r x

then x =r y. However (0:8 0:9) �r (0:9 0:8) and (0:9 0:8) �r (0:8 0:9), but both preferences

are di�erent. Therefore, we want to cluster those preferences which belong to the same next

corner reference into one class. We want to de�ne the corner reference order based on these

classes.

De�nition 12 (Class of Preferences) Let a = (a1; � � � ; am) be a preference and ref(a) =

(r1; � � � ; rm) 2 f0; 1gm is next corner reference. Then the class of preferences of a is called

class(a) and contains all those preferences for next corner reference ref(a), which have the

same distance from ref(a) as a.

De�nition 13 (Next Reference Order on Preference Classes) Let a = (a1; � � � ; am),

b = (b1; � � � ; bm) be two preferences and their common next corner reference r = (r1; � � � ; rm).

Then the corner reference order on classes of preferences �rc is de�ned as follows:

class(a) �rc class(b), if jr � aj � jr � bj. Here � is the usual order for real numbers and

15



jr� aj =
p
(r1 � a1)2 + � � �+ (rm � am)2 is the distance of the preference a from reference r.

We say that preference class class(a) is greater than or equal to the preference class class(b).

De�nition 14 (Preference Value of a Preference Class) The preference value of a

preference class class(a) is the preference value of an arbitrary preference which belongs to

this class.

Theorem 1 The corner reference order for preference classes is a partial ordering.

Proof:

Let a = (a1; � � � ; am), b = (b1; � � � ; bm) be two preferences with their corresponding preference

classes class(a) and class(b). Let r = (r1; � � � ; rm) 2 f0; 1gm be their common next corner ref-

erence. We have to show reexivity, antisymmetry and transitivity for the preference classes.

Reexivity:

class(a) �rc class(a), since jr � aj � jr � aj.

Antisymmetry:

Let class(a) �rc class(b) and class(b) �rc class(a)

Then jr � aj � jr � bj and jr � bj � jr � aj

Then the distance of a and b is equal, that is they are in the same preference class, that is

class(a) =rc class(b)

Transitivity:

Let class(a) �rc class(b) and class(b) �rc class(c)

Then jr� aj � jr� bj and jr� bj � jr� cj and it follows jr� aj � jr� cj, that is class(a) �rc

class(c).

2

The corner reference order for classes of preferences is a partial order which meets the partic-

ular requirements for a neural interpretation of preferences (multidimensional and uncertain

16



close to 0:5) but also the general requirements for a fuzzy interpretation of preferences (at

least partial order in goal domain) and also the general requirements of neural and symbolic

integration (symbolic corner reference as a reference for classes of neural preferences). The

preference value of a class of output preferences of a neural network can be understood as

the membership degree of these output preferences for an m-dimensional fuzzy set which rep-

resents a reference (for instance a corner reference) in m-dimensional space. Figure 4 shows

examples of four preference classes which have the same distance to their corresponding corner

reference.

0

0
,1
6

0
,3
2

0
,4
8

0
,6
4

0
,8

0
,9
6

0

0,2

0,4

0,6

0,8

1

AAAAAAAA
A
A

A
A
AA
AA
A
AAAAAAAAAAAAA

AA
AA
A
A
A AAAAA

AAAAAAAAAAAA
AA
AA
AA AAAAAA

AA
A
A
A
AAAAAAAAAAAAAAAA

A
A
AA
AA
AAAA AAAAAAAAA

A
A
A
AA
AAAAAAAAAA

AA
AA
AA
AA
A
A
AA AAAAAAAAA

A
AA
AA
A
A

AA
AA
A
A
A
A
A
A
AAAAA AAAAAAAAAAAAAAAA

AA
AAAAAAA AA

A
A
A
A
A
A
A
AAAAAAAAAAAAAA
AAA
A
A
A
A
A
A
A
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
AA AAAAAAAAAA
AAA
A
A
AA
AA
AA
AA
AAAA AAAAAAAAA
AAAAA
A
A
AAAAAAAA

A
AAAAAAAAAA

AAAAAA
A
A
AAAAAAAA

AA
AA
AA
AAAAAAAAAA

AAAAAAAA
A
A
AAAAAAAAA

AA
A
A
AAAAAAAAAAAAAA

AA
AA
AA
AA
AA
AA
AA
AA
A
A

AAAA
AAAAAAAA

A
AAAAAA
A
A
A
A

AAAAAA
AA
A
AAAAAAAAAAA

AA
AA
A
A
A AAAAAA

AAAAA

0

0,16

0,32

0,48

0,64

0,8

0,96

Figure 4: Classes of preferences in three-dimensional space

Another reason for the use of classes of preferences is based on symbolic processing. If a

preference value for (Feature1; F eature2) has to be speci�ed, a single value, e.g. 0:8, can

be given. This preference value corresponds to all those preferences which have the same

corresponding distance from the speci�ed corner reference. Therefore a class of preferences

17



supports also the integration of symbolic and neural representations. A class of preferences

represents a high-dimensional hypersphere of an unlimited number of preferences with the

same distance from the speci�ed corner reference.

4 Preference Moore Machines for Preference Mappings

In this section we consider preference Moore machines as one possibility to relate principles of

symbolic computational representations and neural representations by means of preferences.

We have chosen this type of machines since they are simple and widely applicable.

4.1 Synchronous Sequential Machines

One simple well-known and eÆcient method of representing previous context is the use of

�nite state automata and transducers [Hopcroft and Ullman, 1979]. Basically automata and

transducers are in a certain context state and analyze a certain word (symbol). Then they

transfer into a new state and potentially generate a new word (symbol). Using changing

states it is possible to encode the sequential context.

De�nition 15 (Synchronous Sequential Machine, Transducer) A synchronous se-

quential machine M is a tuple M = (I;O; S; sf; of), with

1. I, O �nite, nonempty sets of input and output.

2. S nonempty set of states.

3. The function sf : I � S ! S is a state transition function.

4. The function of is the output function. If the output depends on the state and the input,

the machine is a so-called Mealy machine with the output function of : I � S ! O. If

the output only depends on the state the machine is a so-called Moore machine with the

output function of : S ! O. These synchronous sequential machines are sometimes

called transducers.

A sequential machine assigns an output and a new state to an input and an old state. This can

be done for a whole sequence of inputs and states in discrete time. The set S is not necessarily

18



�nite [Booth, 1967] although this is assumed for �nite machines. While automata or acceptors

of languages decide whether a certain input belongs to the corresponding grammar, sequential

machines are transducers which change their internal states dynamically for the inputs and

previous states but they also provide an output for each input.

Mealy and Moore machines are slightly di�erent. Moore machines determine the state

�rst and afterwards this state is used to provide the output. In contrast, the out-

put for a Mealy machine depends also directly on the input. However, it can be

shown that for each Moore machine there is an equivalent Mealy machine and vice versa

[Booth, 1967, Hopcroft and Ullman, 1979].

In our case we concentrate on Moore machines since the output of neural networks is usually

based on the internal state. This holds for instance for feedforward networks or simple recur-

rent networks. While sometimes [Sun, 1995] a sequential machine has been used for modeling

a single element of a neural network, we want to use a sequential machine as a description

for a whole network. This is also motivated by the fact that real neuron systems can be seen

as physical entities which perform state transitions [Churchland and Sejnowski, 1992].

It is possible to de�ne state transition tables which assign each combination of input and

current state a new output and a new state. That way a symbolic synchronous sequential

machine is speci�ed. If clear regularities are known and the number is limited, such tables

can be found manually. However, the number of input and state combinations quickly gets

so large that automatic procedures are necessary.

4.2 Synchronous Neural Preference Moore Machine

Traditional usual state transition tables are discrete and symbolic. Therefore they do not

support gradual representations. For instance, input or state can be ambiguous and have

di�erent gradual preferences for di�erent interpretations. For instance \meeting" could have

a larger preference for the syntactic interpretation as a noun and a smaller preference for a

verb form. Therefore we want to use preferences for input, output and states of such machines.

These preferences should be able to take values from [0; 1]m so that multiple preferences can

be represented and integrated.

19



We use an n-dimensional preference for the input and an m-dimensional preference for the

output. Then we get a new synchronous machine which we will call a preference Moore

machine. We want to describe such a synchronous sequential preference Moore machine which

transforms sequential input preferences to sequential output preferences. We will see that

simple recurrent networks or feedforward networks can be interpreted as neural preference

Moore machines. Furthermore, we will show how symbolic and neural knowledge can be

integrated quite naturally using preference Moore machines.

De�nition 16 (Preference Moore Machine) A preference Moore machine PM is a syn-

chronous sequential machine, which is characterized by a 4-tuple PM = (I;O; S; pf), with I,

O and S non-empty sets of inputs, outputs and states. pf : I � S ! O � S is the sequential

preference mapping and contains the state transition function sf and the output function of .

Here I, O and S are n-, m- and l-dimensional preferences with values from [0; 1]n, [0; 1]m

and [0; 1]l, respectively.

The preference Moore machine realizes a sequential preference mapping, which uses the cur-

rent state preference S and the input preference I to assign an output preference O and a

new state preference.

Simple recurrent networks (SRN) [Elman, 1991] or plausibility networks [Wermter, 1995] have

the potential to learn a sequential preference mapping pf : I � S ! O � S based on in-

put and output examples while traditional Moore machines or Fuzzy-Sequential-Functions

[Santos, 1973] use manual encodings.

A simple recurrent neural network constitutes a neural preference Moore machine which gen-

erates a sequence of output preferences for a sequence of input preferences. Here internal

state preferences are used as local memory. A feedforward network represents a neural pref-

erence Moore machine with a degenerated memory. A plausibility network [Wermter, 1995]

constitutes a more general form of neural preference Moore machine.

On the one hand, we can associate a neural preference Moore machine in a preference space

with its symbolic interpretation and on the other hand we can represent a symbolic transducer

in a neural manner. Using the symbolic m-dimensional preferences and the corner reference

order it is possible to interpret neural preferences symbolically as well as to integrate symbolic

20



preferences with neural preferences. Each preference of a neural trajectory is a representative

of its preference class and it is possible to assign a symbolic description as a corner reference

together with a preference value. That way neural preferences can be interpreted symboli-

cally. On the other hand, symbolic knowledge can be integrated with neural knowledge by

associating a preference value with a symbolic corner reference. This preference value of the

symbolic reference determines which neural preference class is associated with the symbolic

reference.

5 Combination of Preferences and Preference Machines

Symbolic regular relations can be understood as top-down speci�cation for symbolic Moore

machines. On the other hand, a training set can be viewed as a bottom-up speci�cation

for neural preference Moore machines. In this section we want to look at the integration of

preferences.

5.1 Preference Classes as the Basis for Combination

We want to examine a possible integration of symbolic and neural Moore machines. We will

consider a single neural or symbolic Moore machine as a unit, whose input and output should

be integrated. We need a common basis for an integration of a symbolic output of a symbolic

Moore machine and a vector output of a neural Moore machine. Therefore, the question

arises where a symbol and a vector representation can be combined so that an integration is

possible. We suggest that a preference class could be a suitable connection between di�erent

symbolic and/or neural Moore machines (see also section 3.2). On the one hand, a special

m-dimensional output vector of a neural network is part of anm-dimensional preference class.

On the other hand, the vectors which have the same preference value for a given reference

build an m-dimensional preference class.

If a preference value from [0; 1] is speci�ed for a symbolic sharp representation from f0; 1gm

then a preference class is associated with a sharp symbolic representation. For instance the

symbolic representation (noun; not verb) can be associated with a preference value 0:8. This

associates a preference class which favors (noun; not verb) but only with a preference of 0:8

21



instead of 1. By means of these preference classes a symbolic discrete representation gets

more gradual and it is associated with a set of preferences which can be interpreted at a

neural level as well.

However, if one associates a neural vector representation from [0; 1]m with its preference

class, then each vector has a preference class. Therefore an abstraction from an individual

vector is possible and this vector is summarized together with other vectors with the same

preference value to a preference class. This preference class can be interpreted symbolically by

specifying the symbolic representation and its preference value. Therefore, a preference class

is a connection for an integration of symbolic and neural knowledge. The basic underlying

integration possibilities are the operations of intersection and union of preference classes.

That way it is possible to integrate di�erent knowledge sources. Below we will focus on these

operations on preference classes.

5.2 Preference Class Operations

We assume [0; 1]n ! [0; 1]m be a mapping which associates input preferences with output

preferences. For preference classes from [0; 1]m we can de�ne the operations for intersection

and union. Let a = (a1; � � � ; am), b = (b1; � � � ; bm) be two preferences from [0; 1]m with their

corresponding preference classes classref(a)(a) and classref(b)(b). Then let prefref(a)(a) be

preference value of a preference a for a reference ref(a); similarly this holds for prefref(b)(b).

If it is clear that the reference of a preference is the next corner reference ref(a) 2 f0; 1gm,

we write for short pref(a) rather than prefref(a)(a) and class(a) rather than classref(a)(a).

We will consider a preference class in a slightly modi�ed compact notation as a pair of

reference and preference value: preference class = (reference; preference value). For

instance, ((0 1); 0:3) is a preference class in the two-dimensional space which contains all

preferences which have the preference value 0:3 for the reference (0 1).

5.2.1 Union of Preference Classes

De�nition 17 (Union of two m-dimensional Preference Classes) The union of two

preference classes (ref(a); pref(a)) and (ref(b); pref(b)) is a preference class which has

22



the reference (max(ref(a)1; ref(b)1); � � �max(ref(a)m; ref(b)m)) and the preference value

max(prefref(a)(a); prefref(b)(b)). We call this union of preference classes PU:

PU : PU(((ref(a)1; � � � ref(a)m); pref(a)); ((ref(b)1; � � � ref(b)m); pref(b)))

= ((maxfref(a)1; ref(b)1g � � �maxfref(a)m; ref(b)mg);maxfpref(a); pref(b)g)

If the (symbolically interpretable) reference of two preference classes is equal then the reference

will be kept and the union provides the preference class with the larger preference value. If

the reference of two preference classes is di�erent then the union is extended to the references.

Then the union provides the united preference class with the larger preference value. Later

we will see an illustrative example in section 6.4.

5.2.2 Intersection of Preference Classes

De�nition 18 (Intersection of two m-dimensional Preference Classes)

The intersection of two preference classes (ref(a); pref(a)) and (ref(b); pref(b)) is a pref-

erence class which has the reference (min(ref(a)1; ref(b)1); � � �min(ref(a)m; ref(b)m)) and

the preference value min(prefref(a)(a); prefref(b)(b)). We call this intersection of preference

classes PI:

PI : PI(((ref(a)1; � � � ref(a)m); pref(a)); ((ref(b)1; � � � ref(b)m); pref(b)))

= ((minfref(a)1; ref(b)1g � � �minfref(a)m; ref(b)mg);minfpref(a); pref(b)g)

If the (symbolically interpretable) reference of two preference classes is equal then the reference

will be kept and the intersection provides the preference class with the smaller preference

value. If the reference of two preference classes is di�erent then the intersection is extended

to the references. Then the intersection provides the intersected preference class with the

smaller preference value. Later will will see an illustrative example in section 6.4.

23



5.3 M-dimensional Preference Classes and Fuzzy Sets

In section 3.1 we have speci�ed a number of axioms for the union and the intersection of fuzzy

sets. These axioms had to be ful�lled so that a de�nition of the union or the intersection

for fuzzy sets was useful [Klir and Folger, 1988, Zimmermann, 1991]. In a similar manner we

will now examine whether our operations for preference classes ful�ll these axioms which are

a basic precondition for a relationship of preference classes to fuzzy sets. The axioms are: 1)

generalization of sharp sets, 2) commutativity, 3) monotonicity and 4) associativity.

Theorem 2 Let �rc be the partial ordering for the m-dimensional preference space [0; 1]m.

Then the union PU on preference classes ful�lls the axioms generalization of sharp sets (PU1),

commutativity (PU2), monotonicity (PU3), and associativity (PU4).

Proof:

PU1:

PU((ref(a); 0); (ref(b); 0)) = ((maxfref(a)1; ref(b)1g � � �maxfref(a)m; ref(b)mg); 0)

PU((ref(a); 1); (ref(b); 0)) = ((maxfref(a)1; ref(b)1g � � �maxfref(a)m; ref(b)mg); 1)

PU((ref(a); 0); (ref(b); 1)) = ((maxfref(a)1; ref(b)1g � � �maxfref(a)m; ref(b)mg); 1)

PU((ref(a); 1); (ref(b); 1)) = ((maxfref(a)1; ref(b)1g � � �maxfref(a)m; ref(b)mg); 1)

that is PU behaves like the union of sharpm-dimensional sets. Here (ref(a); 0)) = (ref(b); 0))

is the center of the m-dimensional preference space, (ref(a); 1)) or (ref(b); 1)) is a corner ref-

erence of the m-dimensional preference space.

PU2:

PU((ref(a); pref(a)); (ref(b); pref(b)))

= ((maxfref(a)1; ref(b)1g � � �maxfref(a)m; ref(b)mg);maxfpref(a); pref(b)g)

= ((maxfref(b)1; ref(a)1g � � �maxfref(b)m; ref(a)mg);maxfpref(b); pref(a)g)

= PU((ref(b); pref(b)); (ref(a); pref(a)))

24



that is PU is commutative.

PU3:

Let (ref(a); pref(a)) �rc (ref(b); pref(b)) and (ref(c); pref(c)) �rc (ref(d); pref(d)). That

is, a preference a is comparable with a preference b (for corner references: ref(a) = ref(b))

and the preference value of a is smaller than the preference value of b. For c and d the

corresponding holds.

PU((ref(a); pref(a)); (ref(c); pref(c)))

= ((maxfref(a)1; ref(c)1g � � �maxfref(a)m; ref(c)mg);maxfpref(a); pref(c)g)

�rc ((maxfref(b)1; ref(d)1g � � �maxfref(b)m; ref(d)mg);maxfpref(b); pref(d)g)

= PU((ref(b); pref(b)); (ref(d); pref(d)))

that is PU is monotonic.

PU4:

PU(PU((ref(a); pref(a)); (ref(b); pref(b))); (ref(c); pref(c)))

= ((maxfmaxfref(a)1; ref(b)1g; ref(c)1g � � �maxfmaxfref(a)m; ref(b)mg; ref(c)mg);

maxfmaxfpref(a); pref(b)g; pref(c)g)

= ((maxfref(a)1;maxfref(b)1; ref(c)1gg � � �maxfref(a)m;maxfref(b)m; ref(c)mgg);

maxfpref(a);maxfpref(b); pref(c)gg)

= PU((ref(a); pref(a)); PU((ref(b); pref(b)); (ref(c); pref(c))))

that is PU is associative.

2

Theorem 3 Let �rc be the partial ordering for the m-dimensional preference space [0; 1]m.

Then the intersection PI on preference classes ful�lls the axioms generalization of sharp sets

(PI1), commutativity (PI2), monotonicity (PI3), and associativity (PI4).

25



Proof:

PI1:

PI((ref(a); 0); (ref(b); 0)) = ((minfref(a)1; ref(b)1g � � �minfref(a)m; ref(b)mg); 0)

PI((ref(a); 1); (ref(b); 0)) = ((minfref(a)1; ref(b)1g � � �minfref(a)m; ref(b)mg); 0)

PI((ref(a); 0); (ref(b); 1)) = ((minfref(a)1; ref(b)1g � � �minfref(a)m; ref(b)mg); 0)

PI((ref(a); 1); (ref(b); 1)) = ((minfref(a)1; ref(b)1g � � �minfref(a)m; ref(b)mg); 1)

that is PI behaves like the intersection of sharp m-dimensional sets. Here (ref(a); 0)) =

(ref(b); 0)) is the center of the m-dimensional preference space, (ref(a); 1)) or (ref(b); 1)) is

a corner reference of the m-dimensional preference space.

PI2:

PI((ref(a); pref(a)); (ref(b); pref(b)))

= ((minfref(a)1; ref(b)1g � � �minfref(a)m; ref(b)mg);minfpref(a); pref(b)g)

= ((minfref(b)1; ref(a)1g � � �minfref(b)m; ref(a)mg);minfpref(b); pref(a)g)

= PI((ref(b); pref(b)); (ref(a); pref(a)))

that is PI is commutative.

PI3:

Let (ref(a); pref(a)) �rc (ref(b); pref(b)) and (ref(c); pref(c)) �rc (ref(d); pref(d)). That

is, a preference a is comparable with a preference b (for corner references: ref(a) = ref(b))

and the preference value of a is smaller than the preference value of b. For c and d the

corresponding holds.

PI((ref(a); pref(a)); (ref(c); pref(c)))

26



= ((minfref(a)1; ref(c)1g � � �minfref(a)m; ref(c)mg);minfpref(a); pref(c)g)

�rc ((minfref(b)1; ref(d)1g � � �minfref(b)m; ref(d)mg);minfpref(b); pref(d)g)

= PI((ref(b); pref(b)); (ref(d); pref(d)))

that is PI is monotonic.

PI4:

PI(PI((ref(a); pref(a)); (ref(b); pref(b))); (ref(c); pref(c)))

= ((minfminfref(a)1; ref(b)1g; ref(c)1g � � �minfminfref(a)m; ref(b)mg; ref(c)mg);

minfminfpref(a); pref(b)g; pref(c)g)

= ((minfref(a)1;minfref(b)1; ref(c)1gg � � �minfref(a)m;minfref(b)m; ref(c)mgg);

minfpref(a);minfpref(b); pref(c)gg)

= PI((ref(a); pref(a)); P I((ref(b); pref(b)); (ref(c); pref(c))))

that is PI is associative.

2

We have shown that the union and intersection on preference classes and fuzzy sets ful�ll

equivalent axioms. Furthermore fuzzy sets and preference classes represent uncertainty by a

fuzzy value or a preference value. Therefore there is a tight relationship between fuzzy sets

and preference classes if we interpret them as points in m-dimensional space.

6 Real-world Case Studies for Preference Moore Machines

The main point of this paper has been on the theoretical aspects of preference Moore

machines. However, in related work we have described more experimental and applied

aspects of preference Moore machinery for syntactic and semantic spoken language anal-

ysis [Wermter and Weber, 1997], for Moore machine extraction from recurrent networks

27



[Wermter, 2000] and classi�cation [Wermter et al., 1999b]. In this section we want to illus-

trate some additinal properties of preference Moore machines based on a syntactic tagging

task and a semantic classi�cation task.

6.1 Syntactic Tagging: From Symbolic Regular Relations to Moore Ma-

chines

So far we have described preference Moore machines as a principle for integration. However,

we also need to focus on possibilities how higher level symbolic knowledge can be transferred

into such sequential machines. Therefore we will briey outline one opportunity, namely the

transfer of regular relations into preference Moore machines.

We will focus on the replacement for 2-relations since these can be interpreted as assigning an

output to an input. Such symbolic 2-level representations have been used primarily for phono-

logical and morphological lexicon processing [Koskenniemi, 1983, Kaplan and Kay, 1994]. For

instance a morphological 2-level rule system has been built for Finnish which uses lexical

strings and surface strings [Koskenniemi, 1983]. The task of the rules is to express the di�er-

ences between lexical representation and morphological or phonological surface representation

of a word.

Di�erent replacement operations can be de�ned and there has been some progress for

the basic formalism of replacement in the calculus of �nite machines [Karttunen, 1995,

Kempe and Karttunen, 1996], for instance for a conditional parallel replacement. The con-

ditional parallel replacement is a relation which maps a set of n expressions Ui in an upper

language U in a set of corresponding n expressions Li in a lower language L i� they occur in

a certain left and right context (li; ri).

U1 ! L1jjl1 r1; � � � ; Un ! Lnjjln rn

For this parallel replacement it is possible that for one input several di�erent outputs can be

generated. However, considering the use of recurrent networks we are interested in a single

output. Furthermore, we want to consider only the left context corresponding to a left-to-

right processing. Therefore we rather need a directed replacement operator which allows the

28



largest possible replacements while moving from left to right. Such symbolic replacement

operators for regular relations are currently being investigated [Karttunen, 1996]. While it

is still possible to keep the main restrictions of �nite symbolic machines, the speci�cation of

regular relations is much shorter and more eÆcient. The longest left-to-right replacement is

abbreviated as follows:

T@! L:::R

Moving from left to right, the longest T is identi�ed and new markers L and R are introduced.

T , L and R are a regular language (or as a special case a string ).

We focus on an example task of assigning phrasal categories to basic syntactic categories. If

we use the notation of the longest left-to-right replacement then we can specify the abstract

phrasal category of a noun group ng in a simpli�ed version as the following regular relation.

That is, a nominal group ng consists of an optional determiner (d) followed by an optional

adverb (a), an arbitrarily long sequence of adjectives j� and an arbitrarily long non-empty

sequence of nouns n+ or a noun group consists of a pronoun u. In a similar manner we

show this principle for several other phrasal categories, in particular for verbal groups vg and

prepositional groups pg.

[[(d)(a)j � n+]ju @! fng:::g;

v + @! fvg:::g;

r(d)(a)j � n+ @! fpg:::g]

A verbal group vg can be a non-empty sequence of verbs v+, a prepositional group pg can

consist of a preposition r, an optional determiner (d) followed by an optional adverb (a),

an arbitrarily long sequence of adjectives j� and an arbitrarily long non-empty sequence

of nouns n+. If such sequences of basic syntactic categories occur then the corresponding

parallel replacements can be performed. Of course such a regular relation is not a complete

description of all possible syntactic sequences, but many often occurring constructions can

already be dealt with.

29



Sequences of regular expressions and relations can be realized by symbolic Moore machines.

That way important subsets of natural language can be analyzed. In this section we want

to focus on a speci�c example for the replacement of 2-relations. Here the left-to-right-

replacement operator [Karttunen, 1996] was used to specify a transducer for simple phrases.

9

1 2 3 4 5 6

7 8 10 11 12 13

14 15 16 17 18

0

?

a
d

j
r

{pg

{vg
{ng

0:{pg

0:{vg

0:{ng

a dj

r

? {ng {pg {vg }

0:{ng

0:{pg

0:{vg

a dj r

0:{ng

0:{pg0:{vg

0:{ng

a

d

j

r

0:{pg

0:}

r

aj

d

n j
n

0:}

a dj
r

?
{ng
{pg
{vg
}

0:{ng

0:{vg

0:{vg

j

d

u

a j

n

v

v

0:}

?
{ng
{pg
{vg
}

a
j d

r

0:{ng

0:{pg

a

d

u

n

d

u

a

}

u

j

j

n
a

d

Figure 5: A symbolic Moore Machine for simple noun groups, verbal groups and prepositional

groups as generated for the three relations speci�ed above.

The automatically generated 2-band transducer which corresponds to these relations is de-

scribed in �gure 5. The transducer has 19 states and 102 edges. The symbols of the alphabet

are: a, d, j, n, r, u, v, fng, fpg, fvg, g, ?, 0. The symbols a, d, j, n, r, u, v are basic syntactic

categories (adverb, determiner, adjective, noun, preposition, pronoun, verb. The symbol ?

stands for an arbitrary symbol which is not within the alphabet. The symbol 0 stands for the

empty string. States are named with \s" and an additional number, �nal states are named

30



with \fs". Each edge has a marker which represents the input and output for the edge transi-

tion. For instance, starting from state 0 and for an empty input, the symbol fng is generated

and the state is transferred to s16. This transition is shown as fs0 :< 0 : fng >! s16. If

input and output of the edge are identical then we only show the symbol once, as for instance

in fs0 : a! fs1.

Table 1 shows an example for the replacement in symbolic 2-relations. For each example

sentence the input is shown as the basic syntactic category as well as the output as the

phrasal syntactic category. The sentence \The fourteenth is a Wednesday" is recognized as a

sequence of a noun group, a verbal group and a noun group. In the sentence \I thought in the

next week in any case in April" we have a sequence noun group, verbal group, prepositional

group, prepositional group, prepositional group from left to right. The restrictions on groups

allows that several prepositional groups can be within an overall prepositional phrase. The

particular Moore machine which performed this assignment had 19 states and 102 transitions.

Sentence: The fourteenth is a Wednesday

Input: d n v d n

Replacement: ng d n vg v ng d n

Sentence: I thought in the next week in any case in April

Input: u v r d j n r d n r n

Replacement: ng u vg v pg r d j n pg r d n pg r n

Table 1: Examples for replacement in symbolic 2 relations

6.2 Semantic Classi�cation: Learning a Neural Preference Moore Machine

In this section we demonstrate how preference Moore machines can be used in a real world

text routing scenario. The Reuters newswire collection [Lewis, 1997] contains real-world doc-

uments which appeared on the Reuters newswire. All news titles in the Reuters corpus belong

to one or more of eight main categories: Money/Foreign Exchange, Shipping, Interest Rates,

31



Economic Indicators, Currency, Corporate, Commodity, Energy.

We want to use this categorization task to give an example of a neural preference Moore ma-

chine and to illustrate preference values and the union of the preferences. In our experiments

we use 10 733 titles whose documents have a title and at least one topic. The total number

of words is 82 339 and the number of di�erent words in the titles is 11 104. For our training

set, we use 1 040 news titles, the �rst 130 of each of the 8 categories. All the other 9 693 news

titles are used for testing the generalization to new and unseen examples.

BANK
OF

JAPAN
DETERMINED

TO
KEEP

EASY
MONEY

POLICY

0
150

300
450

600
750

900

0

0.5

1

1.5

2

2.5

S
um

 S
qu

ar
ed

 E
rr

or

Epoch 

Figure 6: The error surface of the title \Bank of Japan Determined To Keep Easy Money

Policy"

In our experiments, we use a recurrent plausibility network [Wermter, 1995] as a Preference

Moore machine with two hidden and two context layers (for more details of the particular

architecture see [Wermter et al., 1999b]). Input to the network is the word representation,

one word at a time. Output is the desired semantic routing category. Training is performed

until the sum squared error does not decrease anymore, typically after 900 epochs of training.

An example and its training behavior is shown in Figure 6:\Bank of Japan Determined To

Keep Easy Money Policy". This example belongs to the \interest" category. The beginning

32



words \Bank of Japan" could be classi�ed under di�erent categories such as \money/foreign

exchange" and \currency". However, the context from words such as \easy money policy"

eventually allows the network to learn the correct classi�cation. In contrast to the encoded

symbolic Moore machine from the previous subsection, we have here an example of a learning

neural preference Moore machine which is trained to perform a classi�cation task.

6.3 Semantic Classi�cation: Combining Several Preference Moore Ma-

chines

So far we have illustrated the learning process of a neural preference Moore machine with an

example. Each output vector of the network is a preference which belongs to a preference

class and has a certain preference value. Using the previous operations intersection or union

one can combine two or more sequences of n-dimensional output preferences from multiple

networks.

Table 2 shows the results from the preference class union operations applied to the output

neural preferences of two neural preference Moore machines in our text routing domain. The

two networks have the same architectures and training sessions but started with di�erent

initial weights. They have similar overall performance on the Reuters news corpus but the

machines di�er somewhat which titles they classify correctly.

Category Test set

recall precision pref. value

NPM1 92.57 91.87 0.90

NPM2 92.67 91.32 0.90

NPM1 [NPM2 95.71 91.96 0.93

Table 2: Neural preference class operations on Neural Preference Moore machines (NPM)

The union of two neural preference Moore machines (NPM) increases the recall and slightly the

precision of the �nal classi�cation. Since the initial recall classi�cation performance is already

high, this improvement can be seen as quite signi�cant. A combination of two preference

Moore machines seems quite appropriate since when we built the union of three preference

33



Moore machines the performance is not improved anymore. In general, this experiment

demonstrates how for a real world task the introduction of the union of preference classes

can improve the performance. For a single preference Moore machine we have 92.67% recall

for the best network. With the hybrid approach and combining two neural preference Moore

machines we reach a recall of 95.71% with a slightly improved precision rate.

We have just demonstrated particular neural preference Moore machine in a certain domain,

preferences and combinations of several such preference Moore machines. Symbolic Moore

machines are integrated in exactly the same manner, since based on the preference space they

are only a special abstraction of a speci�c neural preference Moore machine. We illustrate

the general case in the next section.

6.4 General Study of Integration of Preference Classes

We will illustrate the general use of the union and intersection for preference classes. We

consider the 2-dimensional space. In the following illustration we call the preference values

with \S" for small and \L" for large. Then ((00); S) is the preference class which contains

those preferences which have a preference value S with respect to the reference (00). Table 3

shows the operation of the preference classes with equal reference for the two-dimensional

space.

If the preference classes have the same corner reference they are directly comparable with their

preference values. The preference class PU((ref(a); pref(a)); (ref(b); pref(b))) is the pref-

erence class with the largest preference, that is PU(((00); S); ((00); L)) = ((00); L). On the

other hand, PI((ref(a); pref(a)); (ref(b); pref(b))) is the preference class with the smallest

preference, that is PI(((00); S); ((00); L)) = ((00); S).

If the preferences classes have a di�erent corner reference the preference classes can-

not be judged only by their preference value. In this case the preference classes

PU((ref(a); pref(a)); (ref(b); pref(b))) and PI((ref(a); pref(a)); (ref(b); pref(b))) are a

generalization of U and I for the two-dimensional space. Therefore, it holds for instance

PU(((00); S); ((01); S)) = ((01); S) but PI(((00); S); ((01); S)) = ((00); S). This is based

on the following motivation: For instance, if there is a preference for (no noun; no verb)

34



class(a) class(b) PI(class(a); class(b)) PU(class(a); class(b))

((0 0),S) ((0 0),S) ((0 0),S) ((0 0),S)

((0 0),S) ((0 0),L) ((0 0),S) ((0 0),L)

((0 0),L) ((0 0),S) ((0 0),S) ((0 0),L)

((0 0),L) ((0 0),L) ((0 0),L) ((0 0),L)

((0 1),S) ((0 1),S) ((0 1),S) ((0 1),S)

((0 1),S) ((0 1),L) ((0 1),S) ((0 1),L)

((0 1),L) ((0 1),S) ((0 1),S) ((0 1),L)

((0 1),L) ((0 1),L) ((0 1),L) ((0 1),L)

((1 0),S) ((1 0),S) ((1 0),S) ((1 0),S)

((1 0),S) ((1 0),L) ((1 0),S) ((1 0),L)

((1 0),L) ((1 0),S) ((1 0),S) ((1 0),L)

((1 0),L) ((1 0),L) ((1 0),L) ((1 0),L)

((1 1),S) ((1 1),S) ((1 1),S) ((1 1),S)

((1 1),S) ((1 1),L) ((1 1),S) ((1 1),L)

((1 1),L) ((1 1),S) ((1 1),S) ((1 1),L)

((1 1),L) ((1 1),L) ((1 1),L) ((1 1),L)

Table 3: Intersection and union of preference classes for equal references. S and L can take

arbitrary real values from [0; 1], for which holds: S � L.

35



class(a) class(b) PI(class(a); class(b)) PU(class(a); class(b))

((0 0),S) ((0 1),S) ((0 0),S) ((0 1),S)

((0 0),S) ((0 1),L) ((0 0),S) ((0 1),L)

((0 0),L) ((0 1),S) ((0 0),S) ((0 1),L)

((0 0),L) ((0 1),L) ((0 0),L) ((0 1),L)

((0 0),S) ((1 0),S) ((0 0),S) ((1 0),S)

((0 0),S) ((1 0),L) ((0 0),S) ((1 0),L)

((0 0),L) ((1 0),S) ((0 0),S) ((1 0),L)

((0 0),L) ((1 0),L) ((0 0),L) ((1 0),L)

((0 0),S) ((1 1),S) ((0 0),S) ((1 1),S)

((0 0),S) ((1 1),L) ((0 0),S) ((1 1),L)

((0 0),L) ((1 1),S) ((0 0),S) ((1 1),L)

((0 0),L) ((1 1),L) ((0 0),L) ((1 1),L)

((0 1),S) ((1 0),S) ((0 0),S) ((1 1),S)

((0 1),S) ((1 0),L) ((0 0),S) ((1 1),L)

((0 1),L) ((1 0),S) ((0 0),S) ((1 1),L)

((0 1),L) ((1 0),L) ((0 0),L) ((1 1),L)

((0 1),S) ((1 1),S) ((0 1),S) ((1 1),S)

((0 1),S) ((1 1),L) ((0 1),S) ((1 1),L)

((0 1),L) ((1 1),S) ((0 1),S) ((1 1),L)

((0 1),L) ((1 1),L) ((0 1),L) ((1 1),L)

((1 0),S) ((1 1),S) ((1 0),S) ((1 1),S)

((1 0),S) ((1 1),L) ((1 0),S) ((1 1),L)

((1 0),L) ((1 1),S) ((1 0),S) ((1 1),L)

((1 0),L) ((1 1),L) ((1 0),L) ((1 1),L)

Table 4: Intersection and union of preference classes for di�erent references. S and L can

take arbitrary values from [0; 1] for which holds: S � L.

36



and at the same time a preference for (no noun; verb), then PU provides the optimistic

integration, namely (no noun; verb) and PI provides the pessimistic integration, namely

(no noun; no verb). The preference value of the intersection of preference classes is the min-

imum of the preference values of the arguments, and the preference value of the union of

preference classes is the maximum of the preference values of the arguments.

7 Discussion

Recently the question whether recurrent networks can emulate each symbolic Moore machine

and each �nite automaton has been examined [Kremer, 1995, Kremer, 1996]. On the other

hand it has been shown [Goudreau and Giles, 1995, Goudreau et al., 1994] that a recurrent

network with only one input layer, one context layer and one output layer (so-called Single-

Layer-First-Order-Network) is not suÆcient for realizing arbitrary �nite automata. Therefore,

the link with our preferences between recurrent neural networks and symbolic transducers is

particularly important.

Preference Moore machines are still a relatively simple form of computational machine in

terms of the Chomsky hierarchy. In the future, other forms of symbolic/neural integration

may develop for other types of machines. Here we focused on Moore machines because they are

relatively simple and eÆcient. In the future more complex machines, like di�erent pushdown

automata with explicit unlimited memory, may be further candidates for additional principles

of neural symbolic integration. So far, it could only be shown that simple recurrent networks

can emulate certain restricted properties of a pushdown automaton, in particular the recursive

representation of structures up to a limited depth [Elman, 1991, Wiles and Elman, 1996].

Furthermore, more di�erent preference machines may be developed which are more realistic

with respect to real biological neural networks.

In contrast to traditional symbolic regular representations, neural preference Moore machines

can represent gradual and learned representations. Furthermore, the number of input, state

and output preferences is not necessarily �nite. Therefore neural preference Moore machines

are more powerful than �nite transducers. Our recurrent neural networks can be seen as learn-

ing n�m Fuzzy-transducers which augment a simple �nite symbolic transducer with respect

37



to learning within a gradual preference space. From this perspective symbolic knowledge is a

special abstraction from a neural preference space.

Neural networks as well as fuzzy rules on fuzzy sets are model-free dynamic systems

[Lin and Lee, 1994]. That is, both neural and fuzzy representations should be used espe-

cially for those tasks where appropriate mathematical system descriptions are not available

or where the system descriptions are non-linear [Wang and Mendel, 1992]. Furthermore, it

has been proved that simple feedforward networks as well as fuzzy rules can realize universal

function approximators [Wang and Mendel, 1992, Hornik et al., 1989, Omlin et al., 1995].

However, neural representations and fuzzy representations also have several di�erences. Fuzzy

representations like fuzzy sets and fuzzy rules have some advantages for inferences and direct

interpretation. Furthermore, fuzzy rules can be determined based on examples or based on

manual encoding, which is particularly useful for small data sets [Wang and Mendel, 1992].

Neural representations have some advantages for automatic learning and context integration.

Usually learning is not a major strength of fuzzy representations [Takagi, 1994]. However,

neural networks support learning extensively. The determination of the membership function,

which is often done ad hoc in fuzzy representations, is a main problem for the development

of fuzzy systems [Kruse et al., 1993, Jang and Sun, 1995]2. However learning a membership

function can be supported by learning neural networks [Jang and Sun, 1995]. By providing a

link between fuzzy and neural preferences and machines it is possible that both representations

can be used in a complementary manner.

Although simple computational means like symbolic Moore machines or regular languages are

not suÆcient to describe all possible constructions of natural language completely (see e.g.

[Winograd, 1983]), they still represent a central minimal requirement for the representation

of natural language. Therefore, they are situated at the lower level in the Chomsky hierarchy

of languages [Hopcroft and Ullman, 1979]. However, it is possible to design eÆcient realiza-

2\The speci�cation of membership functions is quite subjective, which means the membership functions

speci�ed for the same concept (say, \cold") by di�erent persons may vary considerably." [Jang and Sun, 1995]

S. 2. \The characteristic function which de�nes a fuzzy set characterizes the relationship between real world

entities and speci�c concepts" ... \however, it does not model or explain how this fuzzy relationship comes

about." [Freksa, 1994]

38



tions of symbolic �nite automata for di�erent areas [Kaplan, 1995, Karttunen, 1996], e.g. for

morphology or lexicon access.

Recently we have worked extensively on many forms of experimental neural/symbolic integra-

tion based on speech/language analysis. In a larger speech/language system SCREEN we have

also used more than 15 di�erent modules based on simple recurrent networks and symbolic au-

tomata [Wermter and L�ochel, 1996, Wermter and Weber, 1997, Wermter and Meurer, 1997].

This system demonstrated that it was possible to analyze the acoustics, syntax, semantics and

dialog level of noisy spoken input using simple recurrent networks and symbolic automata.

However, for making progress beyond a single research problem more general principles of

interaction have to be developed. We suggest that our new concepts for preference Moore

machine integration based on preference classes contribute a new approach towards general

principles of neural symbolic integration.

Preference Moore machines and their integration can be used for a large number of poten-

tial problems, especially where sequential noisy preference mappings may be necessary. We

have started to explore various forms of neural preference Moore machines for text routing

[Wermter et al., 1999b, Wermter et al., 1999a]. Possible new tasks could include preference

Moore machines for exible control of robot actions, handwriting recognition, information

extraction, or spoken language analysis. All these example areas bene�t from previous state

context for sequential processing, robust preference representations for potentially noisy in-

put and learning representations to acquire unknown regularities. Neural preference Moore

machines, like plausibility networks, can support such properties but can also bene�t from

the integration with known symbolic heuristics in these �elds. Furthermore, in future work it

would also be interesting to explore the relationship between preference Moore machines and

real neural networks in order to integrate more realistic neuroscience computing principles

into neural network architectures.

Acknowledgments

I would like to thank Malcolm Farrow for his comments on the paper, I would like to thank

Christo Panchev for computing the union of preferences on the Reuters data.

39



References

[Booth, 1967] Booth, T. L. (1967). Sequential Machines and Automata Theory. John Wiley,

New York.

[Cheng et al., 1994] Cheng, Y., Fortier, P., and Normandin, Y. (1994). A system integrating

connectionist and symbolic approaches for spoken language understanding. In Proceedings

of the International Conference on Spoken Language Processing, pages 1511{1514, Yoko-

hama.

[Churchland and Sejnowski, 1992] Churchland, P. S. and Sejnowski, T. J. (1992). The Com-

putational Brain. MIT Press, Cambridge, MA.

[Dor�ner, 1997] Dor�ner, G. (1997). Neural Networks and a New AI. Chapman and Hall,

London, UK.

[Dyer, 1991] Dyer, M. G. (1991). Symbolic neuroengineering for natural language processing:

a multilevel research approach. In Barnden, J. A. and Pollack, J. B., editors, Advances in

Connectionist and Neural Computation Theory, Vol.1: High Level Connectionist Models,

pages 32{86. Ablex Publishing Corporation, Norwood, NJ.

[Elman, 1991] Elman, J. L. (1991). Distributed representations, simple recurrent networks,

and grammatical structure. Machine Learning, 7:195{226.

[Freksa, 1994] Freksa, C. (1994). Fuzzy systems in AI. In Kruse, R., Gebhardt, J., and Palm,

R., editors, Fuzzy Systems in Computer Science. Viehweg, Braunschweig.

[Goudreau and Giles, 1995] Goudreau, M. W. and Giles, C. L. (1995). On recurrent neural

networks and representing �nite-state recognizers. In Proceedings of the Third International

Conference on Neural Networks, pages 51{55.

[Goudreau et al., 1994] Goudreau, M. W., Giles, C. L., Chakradhar, S. T., and Chen, D.

(1994). First-order vs. second-order single layer recurrent neural networks. IEEE Transac-

tions on Neural Networks, 5(3):511{513.

40



[Hendler, 1991] Hendler, J. (1991). Developing hybrid symbolic/connectionist models. In

Barnden, J. A. and Pollack, J. B., editors, Advances in Connectionist and Neural Compu-

tation Theory, Vol.1: High Level Connectionist Models, pages 165{179. Ablex Publishing

Corporation, Norwood, NJ.

[Honavar and Uhr, 1994] Honavar, V. and Uhr, L. (1994). Arti�cial Intelligence and Neural

Networks: Steps Toward Principled Integration. Academic Press, Cambridge, MA.

[Hopcroft and Ullman, 1979] Hopcroft, J. and Ullman, J. (1979). Introduction to Automata

Theory, Languages, and Computation. Addison Wesley, Reading, MA.

[Hornik et al., 1989] Hornik, K., Stinchcombe, W., and White, H. (1989). Multilayer feedfor-

ward networks are universal approximators. Neural Networks, 2:359{366.

[Jang and Sun, 1995] Jang, J. R. and Sun, C. (1995). Neuro-fuzzy modeling and control. In

Proceedings of the IEEE.

[Jurafsky et al., 1994] Jurafsky, D., Wooters, C., Tajchman, G., Segal, J., Stolcke, A., Fos-

ler, E., and Morgan, N. (1994). The Berkeley Restaurant Project. In Proceedings of the

International Conference on Speech and Language Processing, pages 2139{2142, Yokohama.

[Kaplan, 1995] Kaplan, R. (1995). Finite state technology. In Cole, R. A., Mariani, J.,

Uszkoreit, H., Zaenen, A., Zue, V., Varile, G., and Zampolli, A., editors, Survey of the

State of the Art in Human Language Technology, pages 419{422. NSF, EU.

[Kaplan and Kay, 1994] Kaplan, R. M. and Kay, M. (1994). Regular models of phonological

rule systems. Computational Linguistics, 20(3):331{378.

[Karttunen, 1995] Karttunen, L. (1995). The replace-operator. In Proceedings of the Meeting

of the Association for Computational Linguistics, Cambridge.

[Karttunen, 1996] Karttunen, L. (1996). Directed replacement. In Proceedings of the Meeting

of the Association for Computational Linguistics, Santa Cruz.

41



[Kempe and Karttunen, 1996] Kempe, A. and Karttunen, L. (1996). Parallel replacement

in �nite state calculus. In Proceedings of the International Conference on Computational

Linguistics, pages 622{627, Copenhagen.

[Klir and Folger, 1988] Klir, G. J. and Folger, T. A. (1988). Fuzzy Sets, Uncertainty and

Information. Prentice Hall.

[Koskenniemi, 1983] Koskenniemi, K. (1983). Two level morphology: a general computational

model for word-form recognition and production. Technical Report PhD thesis, Dept. of

General Linguistics, University of Helsinki.

[Kosko, 1992] Kosko, B. (1992). Neural Networks and Fuzzy Systems. Prentice-Hall, Engle-

wood Cli�s, NJ.

[Kremer, 1995] Kremer, S. C. (1995). On the computational power of Elman-style recurrent

networks. IEEE Transactions on Neural Networks, 6(4):1000{1004.

[Kremer, 1996] Kremer, S. C. (1996). A theory of grammatical induction in the connectionist

paradigm. Technical Report PhD dissertation, Dept. of Computing Science, University of

Alberta, Edmonton.

[Kruse et al., 1993] Kruse, R., Gebhardt, J., and Klawonn, F. (1993). Fuzzy Systeme. Teub-

ner, Stuttgart.

[Kwasny and Faisal, 1992] Kwasny, S. C. and Faisal, K. A. (1992). Connectionism and de-

terminism in a syntactic parser. In Sharkey, N., editor, Connectionist natural language

processing, pages 119{162. Lawrence Erlbaum.

[Lewis, 1997] Lewis, D. D. (1997). Reuters-21578 text categorization test collection.

http://www.research.att.com/~lewis.

[Lin and Lee, 1994] Lin, C. T. and Lee, C. S. G. (1994). Supervised and unsupervised learning

with fuzzy similarity for neutral network-based fuzzy logic control systems. In Yager, R. R.

and Zadeh, L. A., editors, Fuzzy sets, neural networks and soft computing, pages 85{125.

Van Nostrand, New York.

42



[Medsker, 1995] Medsker, L. R. (1995). Hybrid Intelligent Systems. Kluwer Academic Pub-

lishers, Boston.

[Miikkulainen, 1993] Miikkulainen, R. (1993). Subsymbolic Natural Language Processing.

MIT Press, Cambridge, MA.

[Omlin et al., 1995] Omlin, C. W., Thornber, K. K., and Giles, C. L. (1995). Fuzzy �nite-

state automata can be deterministically encoded into recurrent neural networks. Technical

Report CS-TR-3599, University of Maryland, College Park.

[Reilly and Sharkey, 1992] Reilly, R. G. and Sharkey, N. E. (1992). Connectionist Approaches

to Natural Language Processing. Lawrence Erlbaum Associates, Hillsdale, NJ.

[Santos, 1973] Santos, E. S. (1973). Fuzzy sequential functions. Journal of Cybernetics,

3(3):15{31.

[Sun, 1995] Sun, R. (1995). Schemas, logics and neural assemblies. Applied Intelligence,

5:83{102.

[Sun and Bookman, 1995] Sun, R. and Bookman, L. (1995). Computational Architectures

Integrating Neural and Symbolic Processes. Kluwer Academic Publishers, Boston, MA.

[Takagi, 1994] Takagi, T. (1994). Context sensitive knowledge processing based on conceptual

fuzzy sets. In Yager, R. R. and Zadeh, L. A., editors, Fuzzy sets, neural networks and soft

computing, pages 331{344. Van Nostrand, New York.

[Wang and Mendel, 1992] Wang, L.-X. and Mendel, J. M. (1992). Generating fuzzy rules

by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics,

22(6):1414{1427.

[Wermter, 1995] Wermter, S. (1995). Hybrid Connectionist Natural Language Processing.

Chapman and Hall, Thomson International, London, UK.

[Wermter, 1997] Wermter, S. (1997). Hybrid approaches to neural network-based language

processing. Technical Report TR-97-030, International Computer Science Institute, Berke-

ley, CA.

43



[Wermter, 1999] Wermter, S. (1999). Preference Moore machines for neural fuzzy integration.

In Proceedings of the International Joint Conference on Arti�cial Intelligence, pages 840{

845, Stockholm.

[Wermter, 2000] Wermter, S. (2000). Knowledge extraction from transducer neural networks.

Journal of Applied Intelligence, 12:27{42.

[Wermter et al., 1999a] Wermter, S., Arevian, G., and Panchev, C. (1999a). Recurrent neu-

ral network learning for text routing. In Proceedings of the International Conference on

Arti�cial Neural Networks, pages 898{903, Edinburgh, UK.

[Wermter and L�ochel, 1996] Wermter, S. and L�ochel, M. (1996). Learning dialog act process-

ing. In Proceedings of the International Conference on Computational Linguistics, pages

740{745, Copenhagen, Denmark.

[Wermter and Meurer, 1997] Wermter, S. and Meurer, M. (1997). Building lexical represen-

tations dynamically using arti�cial neural networks. In Proceedings of the International

Conference of the Cognitive Science Society, pages 802{807, Stanford.

[Wermter et al., 1999b] Wermter, S., Panchev, C., and Arevian, G. (1999b). Hybrid neu-

ral plausibility networks for news agents. In Proceedings of the National Conference on

Arti�cial Intelligence, pages 93{98, Orlando, USA.

[Wermter et al., 1996] Wermter, S., Rilo�, E., and Scheler, G. (1996). Connectionist, Sta-

tistical and Symbolic Approaches to Learning for Natural Language Processing. Springer,

Berlin.

[Wermter and Sun, 2000] Wermter, S. and Sun, R. (2000). Hybrid Neural Symbolic Systems.

Springer, Heidelberg.

[Wermter and Weber, 1997] Wermter, S. and Weber, V. (1997). SCREEN: Learning a at

syntactic and semantic spoken language analysis using arti�cial neural networks. Journal

of Arti�cial Intelligence Research, 6(1):35{85.

44



[Wiles and Elman, 1996] Wiles, J. and Elman, J. (1996). Learning to count without a counter:

A case study of dynamics and activation landscapes in recurrent networks. In Proceedings of

the AAAI Workshop on Computational Cognitive Modeling: Source of the Power, Portland,

Oregon.

[Winograd, 1983] Winograd, T. (1983). Language as a Cognitive Process. Addison-Wesley,

Reading, MA.

[Yager, 1994] Yager, R. R. (1994). Modeling and formulating fuzzy knowledge bases using

neural networks. Neural Networks, 7(8):1273{1283.

[Zadeh, 1965] Zadeh, L. (1965). Fuzzy sets. Information and Control, 8:338{353.

[Zimmermann, 1991] Zimmermann, H. (1991). Fuzzy Set Theory and its Applications.

Kluwer, Boston.

45


