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Abstract. In this paper, we explore the hypothesis that integrating symbolic 
top-down knowledge into text vector representations can improve neural ex-
ploratory bottom-up representations for text clustering. By extracting semantic 
rules from WordNet, terms with similar concepts are substituted with a more 
general term, the hypernym.  This hypernym semantic relationship supplements 
the neural model in document clustering.  The neural model is based on the ex-
tended significance vector representation approach into which predictive top-
down knowledge is embedded.  When we examine our hypothesis by six com-
petitive neural models, the results are consistent and demonstrate that our ro-
bust hybrid neural approach is able to improve classification accuracy and re-
duce the average quantization error on 100,000 full-text articles. 

1   Introduction 

Document clustering is often performed under the assumption that predefined classifi-
cation information is not available.  Thus, the accuracy of clustering is mostly depend-
ent on the definitions of cluster features and similarities since most clustering ap-
proaches organise documents into groups based on similarity measures.  If the results 
of document clustering are compared with human classification knowledge, the accu-
racy depends on the difference between implicit factors of human classification as-
signment and explicit definitions of cluster features and similarities.  However, pure 
unsupervised document clustering methods are sometimes unable to discern document 
classification knowledge hidden in the document corpus.  One possible reason is that 
documents are classified not only on the basis of feature representation but also on the 
basis of human subjective concepts.   



Clustering and classification are treated as methods to organise documents, and 
thus are helpful to access information [11].  Classification is supervised categorisation 
when classes are known; clustering is unsupervised categorisation when classes are 
not known.  However, when different pre-assigned categories of documents contain 
many of the same features, i.e. words, it is not easy for traditional unsupervised clus-
tering methods to organise documents based on their pre-classified categories [1]. 

An example of different decisions by document clustering and classification is il-
lustrated in Fig. 1.  There are nine documents which are pre-classified as two catego-
ries.  Documents pre-classified as one category are represented as black circles and 
documents pre-classified as the other category are represented as white circles.  How-
ever, based on mutual similarities of document vectors, nine documents form two 
clusters in Fig. 1A.  The distance from document 1 to document 2 is shorter than that 
to document 5, so document 1 is in the same cluster as document 2 (Fig. 1B).  Without 
embedding classification knowledge in the clustering approach, it is hard for docu-
ment 1 to be grouped with document 5 (Fig. 1C).    
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Fig. 1. An example of different decisions for document clustering and classification.  Docu-
ments are represented as circles with numbers.  Circles with the same filled colour are pre-
assigned to the same category 

   Kohonen et al. [18] summarise the main purpose of neural text clustering as “the 
goal is to organize a given data set into a structure from which the documents can be 
retrieved easily … this task is different from the pattern recognition task, in which the 
goal is to classify new items and, after learning, no attention is paid to the training 
data.”  Thus the main aim of the Self-Organising Map (SOM) [19] is to organise the 
given document set.  They [18] point out that “Obviously, one should provide the 
different words with such weights that reflect their significance or power of discrimi-
nation between the topics.”  They suggest using the vector space model (VSM) [28] to 



transform documents to vectors if no category information is provided.  However, they 
also state that “If, however, the documents have some topic classification which con-
tains relevant information, the words can also be weighted according to their Shan-
non entropy over the set of document classes.”  A modified VSM which includes 
category information is used in their WebSOM project [18, 13].  

In other words, an integration of clustering and classification knowledge may take 
advantage from an explicit mathematical definition of clustering similarity for the 
classification decision and achieve a higher accuracy for clustering using classification 
knowledge.  Consequently, a guided neural network based on predictive top-down 
classification information offers the opportunity to exploit domain knowledge, which 
is able to bridge the gap of inconsistency between classification knowledge and clus-
tering decisions. 

In this paper, we explore the hypothesis whether integrating linguistic top-down 
knowledge from WordNet [24] into a text vector representation can improve neural 
exploratory bottom-up clustering based on classification knowledge.  By extracting 
semantic rules from WordNet, terms with similar concepts are substituted with a more 
general term.  To achieve our objectives, a series of experiments will be described 
using several unsupervised competitive learning approaches, such as pure Competitive 
Learning (CL) [19, 10], Self-Organising Map (SOM) [18], Neural Gas (NG) [22], 
Growing Grid (GG) [8], Growing Cell Structure (GCS) [7] and Growing Neural Gas 
(GNG) [6].  Our experiments show that hypernyms in WordNet successfully comple-
ment neural techniques in document clustering.   

2   Current Reuters Corpus of news articles 

We work with the new version of the Reuters corpus, RCV1 (It can be found at 
http://about.reuters.com/researchandstandards/corpus/), which consists of 806,791 
news articles.  There are 126 topics in this new corpus but 23 of them contain no arti-
cles.  All articles except 10,186 are classified as at least one topic.  In this paper, we 
concentrate on the most prominent 8 topics (Table 1) for our data set.   

 
Table 1. The description of chosen topics and their distribution over the whole new Reuters 
corpus 

Distribution Topic Description no. % 
C15 Performance 149,359 5.84 
C151 Accounts/Earnings 81,201 3.17 
C152 Comment/Forecasts 72,910 2,85 
CCAT Corporate/Industrial 372,099 14.54 
ECAT Economics 116,207 4.54 
GCAT Government/Social 232,032 9.07 
M14 Commodity markets 84,085 3.29 
MCAT Markets 197,813 7.73 

 



We use the first 100,000 full-text news articles which are pre-classified according 
to the Reuters corpus.  Because a news article can be pre-classified as more than one 
topic, we consider the multi-topic as a new combination topic in our task.  Thus the 8 
chosen topics are expanded to 54 topics (Table 2). 
 

Table 2. The distribution of topic composition 
 

Distribution No Topic composition no. % 
1 ECAT/MCAT 1,034 1.03 
2 CCAT 20,660 20.66 
3 C15/C151/CCAT/ECAT/GCAT 32 0.03 
4 C15/C151/CCAT 6,530 6.53 
5 M14/MCAT 8,197 8.20 
6 ECAT 7,368 7.37 
7 CCAT/GCAT 3,557 3.56 
8 CCAT/ECAT/GCAT 1,842 1.84 
9 MCAT 11,202 11.20 

10 GCAT 22,337 22.34 
…… 

53 C15/C151/CCAT/GCAT/M14/MCAT 1 0.00 
54 C15/C151/C152/CCAT/ECAT 3 0.00 

Total number of news articles 100,000 100.00 

3 Extended Significance Vector Presentation 

For clustering, each document must be transformed into a numeric vector.  One candi-
date, the traditional Vector Space Model (VSM) [28] based on a bag-of-words ap-
proach is probably the most common approach.  However, this model suffers from the 
curse of dimensionality while dealing with a large document collection because the 
dimensionality of document vectors is based on the total number of the different terms 
in the document collection.  In our experiments, there are 7,223 words belonging to 
open-class words, i.e. nouns, verbs, adjectives, and adverbs, from 1,000 full-text news 
articles.  In the 100,000 full-text news article task, there are 28,687 different words.  
Thus, some dimensionality reduction technique for a large scale document set is useful.   

The most common way is leaving out the most common stop words, the most rare 
words and stemming a word to its base form.  However, Riloff [26] suggests that these 
“unimportant words” will make a big difference for text classification.  Only choosing 
the most frequent words from the whole specific word master list is also common [3].  
However, there is no general heuristic to determine the threshold of the frequency.  
Some researchers consider this problem from a document structure viewpoint.  They 
stress that only choosing the news headline, title, the first sentence of the first para-
graph, the last sentence of the last paragraph, the first several lines or any combination 
above is meaningful enough for the full-text articles, e.g. [17].  However, this is de-



cided by the information providers and therefore very subjective.  Henderson et al. [12] 
choose so-called head of nouns and verbs using the Natural Language Processing 
(NLP) parser technique instead of full-text.  This approach still depends on the text 
structure.   

Another group of researchers uses vector representations and train them by cluster-
ing techniques, e.g. SOM.  This cluster information from raw data is treated as input 
for other clustering or classification algorithms to produce a 2-stage clustering or 
classification model.  The original version of WebSOM is one of them [13].  It con-
sists of a word-topic SOM in its first stage and document SOM in its second stage. 
Pullwitt [25] proposes that the concept of a document comes from the concepts of 
sentences. He produces a sentence SOM and uses it to build a document SOM.  Other 
researchers consider the dimensionality reduction problem from a mathematical view, 
such as Principal Component Analysis (PCA), Multi-Dimensional Scaling (MDS), 
Singular Value Decomposition (SVD), etc. [5].  Generally speaking, these approaches 
suffer from three shortcomings, which are computational complexity, information loss 
and difficult interpretation. 

In our work, we propose another vector representation approach, which is called 
the extended significance vector representation.  Dimensionality reduction is one 
major reason for using a different vector representation and another reason is the ex-
traction of important features and filtering noise to improve the clustering perform-
ance.  We do not remove common and rare words because of the evidence by Riloff 
[26] that these words are important.  For the consistency, we restrict our experiments 
to those words found in WordNet, which only contains open-class words that are be-
lieved to be able to convey enough information of document concepts.  The extend 
significance vector representation approach is started with the word-topic occurrence 
matrix, which is described as: 
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where oij is the occurrence of word i in topic j, M is the total number of topics and 

N is the total number of different words.  An element of a significance word vector for 
a word i in topic j is represented as wij and is obtained using the following equation: 
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Equation 2 can be influenced by the different number of news documents observed 
in each topic.  When a specific topic j contains much more articles than others, a word 
i may contain much more occurrences in topic j than in other topics.  Therefore, most 
words may have the same significance weights in topic j and lose the discriminatory 
power to topics.  Equation 3 is defined as the extended significance vector, which uses 
the logarithmic weights of the total number of word occurrences in the data set di-
vided by the total number of word occurrences in a specific semantic topic to alleviate 
skewed distributions in Equation 2.  A more prominent topic which contains more 
word occurrences will have smaller logarithmic values.  Thus, the definition of an 
element in a word for word i for topic j is: 
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Then ,the news document vector d
!

 is defined as a summation of significance word 
vectors iw! = ( )iMii ooo ......21  divided by the number of words in a document, which 
is defined as: 

∑= w
n

d !! 1
, where n is the number of words in news document d. (4) 

4 Extracting Top-Down Semantic Concepts from WordNet 

WordNet [24] is rich of semantic relationships of synset, which is a set of synonyms 
representing a distinct concept.  In this work, we adopt the hypernym-hyponymy rela-
tionship from WordNet to get more general concepts and thus to improve the classifi-
cation ability of the SOM.  A hypernym of a term is a more general term and a hypo-
nym is more specific.  We use this relationship because its gist is similar to the defini-
tion of news cluster in that the concept of a cluster of news is more general than each 
distinct news article.  News articles with a similar concept will be grouped in the same 
cluster. 

The vocabulary problem describes that a term can be present in several synsets.   
Thus, a word in different synsets may be placed in a different hypernym hierarchy (Fig. 
2).  It is hard to determine the right concept for an ambiguous word from several syn-
sets and it is hard to decide the concept of a document that contains several ambiguous 
terms.  Brezeale [2] directly uses the first synset on WordNet because of the greatest 
frequency of occurrence in WordNet.  Voorhess [30] proposes a method called hood 
to resolve this difficulty.  An ambiguous word looks for its some level hypernym until 
finding the same hypernym in each hypernym tree.  A hood is defined as the direct 



descendent of this same hypernym which is shared by different concepts of a term.  
The meaning of ambiguous words can be decided by counting the number of other 
words in the text that occur in each of the different sense’s hoods.  Then the specific 
hood with the largest number is represented as the sense of ambiguous words.  Scott 
and Matwin [29] used hypernym density to decide which synset is more likely than 
others to represent the document. The hypernym density is defined as the number of 
occurrences of the synset within the document divided by the number of words in the 
document. The synset with higher density value is more suitable to represent the 
document.  
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Fig. 2. An example of two hypernym trees for the term orange. The 2-level hypernym for or-
ange with the colour concept is color but with the fruit concept is edible fruit 

 
We do not use the synset directly but take advantage of the synset’s gloss because 

two synonyms may not co-occur in a document, for example, color and colour, and 
orange and orangeness.  The synset’s gloss contains an explanation of the meaning 
and an example sentence of each concept.  For example, the gloss of the word, orange, 
with the fruit concept is “round yellow to orange fruit of any of several citrus trees” 
and with the colour concept is “any of a range of colors between red and yellow”.  In 
contrast to synonyms, words in the gloss and their target word may be more likely to 
co-occur. 

First, we have to convert each term in our semantic lexicon into its hypernym ver-
sion for every topic.  We treat each gloss as a small piece of the document with a core 
concept and transform the gloss using the extended significance vector representation.  
To decide the possible gloss for an ambiguous word, the specific element weights of 
each gloss vector in the specific topic of the original semantic lexicon is compared.  
The gloss vector with the highest weights in the specific element to represent the 
original word is chosen.  For example, a comparison is made for the first element 
weight only when the ambiguous word occurs in topic 1.  The second element weight 
is compared when the ambiguous word occurs in topic 2 and so on.  Then going up 2-
levels in the hypernym tree, we can use this hypernym to build our hypernym version 
of a semantic lexicon for all terms and all categories. 

To describe this approach more clearly, the following example is given.  Assume 
that the extended significance vector of the word orange in the semantic lexicon is 
[0.234 0.033 0.502 … 0.002] and its two gloss vectors with colour concept and with 
fruit concept are [0.101 0.203 0.302 … 0.031] and [0.201 0.103 0.222 … 0.021], 



respectively.  When orange in topic 1 is converted to its hypernym, only the first ele-
ment is compared for two gloss vectors.  Thus, the gloss with fruit concept is chosen 
for orange in topic 1 since the first element in the gloss vector with fruit concept is 
greater than that with colour concept (0.201>0.101).  When orange in topic 2 is con-
verted to its hypernym, the colour concept is chosen (0.203>0.103).  Therefore, the 
same word in the same topic has only one hypernym tree and different words in differ-
ent topics may share the same hypernym tree (Fig. 3).  Please note that to define the 
true meaning of an ambiguous word is not our purpose and this research rather bridges 
the gap of inconsistent decisions from the automated clustering technique and human 
classification. 
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Fig. 3. An example of different hypernym trees for the term orange.  There are four hypernym 
trees for this word in WordNet.  Several different topics may contain the same trees, e.g. topics 
1 and 3 
 

Second, we convert each news article from its original version to its 2-level hy-
pernym one.  Because a look-up table of topic-word-hypernym has been built in stage 
one, we convert each word in each news document based on its classification topic 
and transform the 2-level hypernym data set to vectors by using the extended signifi-
cance vector representation.  This approach is successful to reduce the total number of 
distinct words from 28,687 to 11,239 for our 100,000 full-text test bed, and even 



improves the classification performance for several SOM-like models as we will show 
below. 

5 Experiments with Six Competitive Learning Methods  

There are several models which adopt the competitive learning principle [19, 10].  A 
common goal of those algorithms is to map a data set from a high-dimensional space 
onto a low-dimensional space, and keep its internal structure as faithful as possible.  
We divide these algorithms into 2 groups, i.e. static models and dynamic models, 
depending on whether the number of output units is static or not. 

5.1 Static Models 

We test our approach with three static competitive learning models, i.e. pure Competi-
tive Learning (CL) [10, 19], Self-Organising Map (SOM) [18] and Neural Gas (NG) 
[22].  The main difference between them is the way they update their cluster centres.  
CL is a neural version of k-means [21], which always organises its k cluster centres 
based on the arithmetic mean of the input vectors.  CL enforces the winner-take-all 
function so only the best matching unit (BMU) of the input vector is updated.  SOM is 
a model which mimics the self-organising feature in the brain and maps the high di-
mensional input into a low dimensional space, usually 2.  SOM defines its own 
neighbouring boundary and relation in a grid.  Unit centres which are inside the 
neighbouring boundary are updated according to the distance to the input vector.  The 
topographic map of SOM with WordNet is shown in Fig. 4.  NG is a SOM-like model 
without the relations between its clusters, so the clusters are treated as the gas, which 
can spread in the input space.  All unit centres are updated based on the distance to the 
input vector.   

 
 

Fig. 4. The static model, SOM, with 15*15 units.  Reuters topic codes are shown as numbers 
(Table 2) 



5.2 Dynamic Models 

Apart from the different definition of neighbourhood, dynamic models have variant 
dynamic representations.  In this group of competitive learning algorithms, there is no 
need to define the number of units before training.  These models will decide the 
number of units automatically.  According to the work of Fritzke [9], a SOM model 
may have a good representation on the input vectors with uniform probability density 
but may not be suitable for complex clustering from the viewpoint of topology preser-
vation. 

In this work, Growing Grid (GG) [8], Growing Cell Structure (GCS) [7] and Grow-
ing Neural Gas (GNG) [6] are used to test our hypothesis which integrating symbolic 
top-down knowledge into vector representations can enhance text clustering.  GG is an 
incremental variant of a SOM in terms of the model topology.  It contains 2 stages, i.e. 
a growing stage, and a fine-tuning stage.  Its update rule is the same in these 2 stages 
but the learning rate is fixed in the growing stage and is decayed in the fine-tuning 
stage to ensure the convergence.  It starts with 2x2 units in a grid architecture which is 
able to keep the relative topographic relationships among units and represent input 
samples on a 2-dimensional map.  Then GG develops the grid in column or row direc-
tion according to the position of the unit with the highest frequency of the BMU and 
the farthest direct neighbour of this highest BMU frequency unit. 

GCS and GNG have a unit growing feature and a unit pruning feature as well.  GCS 
is a dynamic neural model which always keeps its units with the triangle connectivity.  
GCS starts with 3 units and a new unit is inserted by splitting the farthest unit from the 
unit with the biggest error.  A unit with a very low probability density, which means 
few input vectors are mapped to this unit, will be removed together with its direct 
neighbours of the corresponding triangle.  GNG is a neural model applying GCS 
growth mechanism for the competitive Hebbian learning topology [23].   

GNG starts with 2 units and connects an input sample’s BMU to the second match 
unit as direct neighbours.  A new unit is inserted by splitting the unit with the highest 
error in the direct neighbourhood from the unit with the highest error in the whole 
structure.  Units will be pruned if their connections are not strong enough.  Both GCS 
and GNG have 2 learning rates, which are applied to BMU and BMU’s direct 
neighbours, respectively.   

5.3  A Comparison of Performance between Six Competitive Learning Models 

The evaluation of SOM-like models needs more careful analysis.  The unsupervised 
feature of SOM usually needs the inclusion of the subjective judgements of domain 
experts [27].  Even though it is possible to see clusters in the SOM-like maps, human 
qualitative judgements should not be the only evaluation criterion.  The main reason is 
that human judgements are subjective and different assessments can be made by the 
same person at a different time or different process.   

Unlike qualitative assessment, quantitative criteria or cluster validity can be divided 
into two types: internal and external [16].  Internal validity criteria are data-driven and 
the average quantization error (AQE) is applied in this research.  The AQE tests the 



distortion of the representation for the model and is defined by Kohonen [20] in Equa-
tion 5.  External validity criteria evaluate how well the clustering model matches some 
prior knowledge which is usually specified by humans.  The most common form of 
such external information is human manual classification knowledge so the classifica-
tion accuracy is used in this research.  These two evaluation criteria have been also 
used by several researchers, e.g. [18, 4, 31, 14, 15].  
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(5) 

 
We use 15x15 (225) units for each model and some other architectures have been 

tried with similar results.  According to our experiments, if we use these models alone, 
we reach a classification accuracy between 54.60% and 61.35% for 100,000 full-text 
documents and an AQE between 2.721 and 2.434.  Except GG, dynamic models are 
better in both evaluation criteria.  This is because GNG and GCS contain the unit-
pruning and unit-growing functions, which are able to adapt per se to input samples 
but GG only contains the unit-growing function and is confined its architecture to a 
grid, which may not reflect input samples faithfully. 

 

Table 3. Classification accuracy and AQE without and with integration of WordNet 2-level 
hypernym for 100,000 full-text documents 

Without WordNet CL NG SOM GG GCS GNG 
Accuracy 54.60% 58.06% 58.22% 54.91% 57.55% 61.35% 

AQE 2.437 2.444 2.708 2.721 2.492 2.434 
With WordNet CL NG SOM GG GCS GNG 

Accuracy 75.64% 80.90% 74.46% 74.60% 80.87% 86.60% 
AQE 2.318 2.325 2.611 2.636 2.383 2.295 

Improvement CL NG SOM GG GCS GNG 
Accuracy 21.04% 22.84% 16.24% 19.69% 23.32% 25.25% 

AQE 4.88% 4.87% 3.58% 3.12% 4.37% 5.71% 
 
We achieve much better performance by integrating top-down knowledge from 

WordNet in all six algorithms based on two evaluation criteria. This hybrid approach 
achieves an improvement of classification accuracy from 16.24% to 25.25% and ac-
complishes between 74.46% and 86.60% accuracy.  The AQE improvement varies 
from 3.12% to 5.71% and has smaller values between 2.295 and 2.636 for 100,000 
full-text documents (Table 3). 



6 Conclusion 

In our work, we integrate symbolic top-down knowledge from WordNet into text 
vector representation using the extended significance vector representation technique.  
We examine the three static unsupervised models, Competitive Learning (CL), Neural 
Gas (NG) and, Self-Organizing Map (SOM) and three dynamic unsupervised models, 
Growing Grid (NG), Growing Cell Structure (GCS), and Growing Neural Gas (GNG) 
to test our hypothesis and approach.  All results demonstrate that an integration of top-
down symbolic information based on WordNet improves the bottom up significance 
vector representations in all six different approaches. Finally dynamic approaches, 
which determine their architecture during learning the task perform slightly better in 
average than static approaches.  This is significant because it can avoid testing many 
static architectures.  Our results demonstrate that our hybrid and dynamic neural 
model has a large potential for learning automatic text clustering. 
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