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Abstract – There has been little research into the use of 
hybrid neural data mining to improve robot performance or 
enhance their capability.  This paper presents a novel neural 
data mining technique that analyses robot sensor data for 
imitation learning.  Learning by imitation allows a robot to 
learn from observing either another robot or a human to gain 
skills, understand the behaviour of others and create solutions 
to problems.  We demonstrate a hybrid approach of 
differential ratio data mining to perform analysis on spatio-
temporal robot behavioural data.  The technique offers 
classification performance gains for recognition of robot 
actions by highlighting points of covariance and hence interest 
within the data. 

 
I. INTRODUCTION 

 
Although most robots are currently used in industry, in 

the next decade it is anticipated that the need for service 
robots for retail, leisure and health care will grow 
significantly [3].  However, robots are still not yet able to 
perform activities that are seen as routine by humans [20].  
In this paper we consider the development of a hybrid 
neural data mining and knowledge extraction approach to 
aid research towards robot learning through demonstration 
and imitation.  We examine how a robot is able to learn to 
recognise its own actions and those of a teacher robot so it 
can perform imitation and demonstration learning.   

Imitation and demonstration learning allows the observer 
to gain skills by creating an abstract representation of the 
teacher's behaviour, understand the aims of the teacher and 
create the solution [5, 11].  Imitation can take the form of 
mimicking the behaviour of the demonstrator or learning 
how the demonstrator behaves.  Robot imitation offers the 
opportunity for learning through demonstration and so 
allows non-robot programmers the chance to teach a robot.   

The brain is able to achieve imitation learning through 
the use of the mirror neuron system [18] which involves 
neurons located in the F5 area of a primate’s brain being 
activated by both the performance of the action and its 
observation.  The recognition of motor actions is based on 
the presence of a goal which implies that the motor system 
does not solely control movement [8].  The role of these 
mirror neurons is to depict actions so they are understood or 
can be imitated.  Our long term aim is to incorporate 

imitation learning techniques into an autonomous robot 
system.  The first step of this process is to enable a robot to 
recognise what actions are being undertaken, without being 
specifically told. 

We demonstrate a new hybrid combination of a neural 
data mining technique, namely differential ratio data 
mining, which can be used to identify the salient trends 
within spatio-temporal data combined with a neural multi-
layer perceptron (MLP) classifier.  Using this hybrid 
approach it is possible to classify this spatio-temporal robot 
sensor data to identify the actions performed.  A 
comparison of networks trained on the unprocessed sensor 
data and the results from the data mining stage is 
conducted.  Finally, we consider the future directions for 
the combination of hybrid neural data mining techniques 
with robotics.    

 
II. SPATIO-TEMPORAL NEURAL DATA MINING IN 

ROBOTICS 
 
Most modern robots are equipped with sensors which 

extract readings which are often spatial and/or temporal in 
nature.  These sensor readings, for instance, can take the 
form of sonar, infra-red, laser or camera values that indicate 
the state of the robot at a specific time step.  Hence, the 
amount of data that can be obtained from such robots can 
quickly increase as multiple sensor readings are taken over 
time.  This has led to a growth in real-time spatio-temporal 
sensor readings data, which is often inherently multi-
dimensional and complex in nature. 

Identification of spatio-temporal objects within the data, 
characterising what these objects are, i.e. the class they 
belong to, is one major aspect of this work [4].  Similarly, 
in robotics, the classification of robot action data is an 
important area of research [7].  This would appear to be 
mutually beneficial, i.e. spatio-temporal data mining used 
as a technique to analyse robotics data, whilst the 
challenges of domains such as robotics motivates the need 
for sophisticated spatio-temporal data mining algorithms. 

There has been growing interest in research into 
techniques to improve classification of spatio-temporal data 
[19].  Scalability of extremely large data sets (in terms of 
dimensionality or volume) has seen a growth of interest [9] 



and is one example of such an area.  Techniques, such as 
Principal Component Analysis (PCA), have been used to 
reduce dimensionality to a projection which represents most 
variance across the data.  However, such techniques result 
in the loss of specific attribute values which are often useful 
when attempting to relate results to the original data.  Other 
conventional techniques suffer from the inability to either 
fully or partially integrate the spatial and/or temporal 
elements, which renders them unsuitable to analyse such 
spatio-temporal data. 

 

 
 
 

Fig 1. Hybrid architecture incorporating differential ratio data mining and 
a neural multi-layer perceptron. 

 
Our proposed hybrid architecture is illustrated in Fig. 1.  

Following the initial encapsulation of robot actions into a 
spatio-temporal data set, the data is normalised and 
differential ratio data mining is performed.  Then, the 
results of this data mining are classified using a neural 
multi-layer perceptron, the outputs of which are the 
particular type of action being executed.  This enables a 
robot to analyse its actions and determine what class of 
behaviour is being performed without being told. 

 
III. DIFFERENTIAL RATIO DATA MINING  

 
The first stage of our architecture, the spatio-temporal 

data analysis, is achieved through differential ratio (dFr) 
data mining, originally discussed by Malone et al [16].  
This technique draws on some elements of ratio rules [12] 
and covariance measures.  Ratio rules data mining is a 
technique that employs eigensystem analysis to calculate 
correlations between values of attributes.  Ratio rules 
address the issue of reconstructing missing/hidden values as 
well as being able to perform ‘what-if’ type scenarios, 
where an item and corresponding value is required for a 
given set of antecedents.  This technique is useful for 
predicting attribute trends, given empirical data, however, 
the process does not incorporate either spatial or temporal 
elements and would be unsuitable for the analysis of such 
data. 

Covariance is a measure of how two variables change 
together [6]; i.e. captures the linear dependencies between 
variables [10].  Considering the two variables X and Y, and 
n objects (in this research an object is a single action), with 

X taking values x(1…n) and Y values y(1…n), the sample 
covariance between X and Y is given in Eq. (1). 
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 Where: 

  x is sample mean of X values 

  y is sample mean of Y values 
 

A. Performing differential ratio data mining 
 

Differential ratio data mining is used to measure 
variation of a given object in terms of the pair-wise ratios 
of the elements describing the data over time.  The robot 
data considered here is particularly suited since it contains 
both spatial and temporal elements, as well as complex 
trends of attribute variation within a single action.  
Consider two variables x and y as elements of a given 
object.  Calculation of a single differential ratio (herein, 
differential ratio, or dFr, will be referred to as the measure 
of difference calculated by this process) between two time 
points, t and t + 1 is given by: 
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 Where:  

x ≤ y   
 
When this is not the case, that is y < x, the variables are 

inverted to ensure the measures remain consistent.  Since it 
is the magnitude of difference in ratios we are looking for, 
that is, how they increase or decrease together, we are not 
concerned with maintaining the two variables juxtaposition 
as numerator and denominator.  When considering the 
instance of y < x, then the following is used; 
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Such a calculation would be performed for a time series 

(t=1 … t=n) and for all pairs of variables that were deemed 
as representative of the dataset.  For a single pair of 



variables, this describes the covariance that occurs over 
time for a given object.  This can be summarised for a 
series of differential ratios (dFr) for a given time series for 
variables x and y in the form; 
 
 Object: x,y[dFrt, dFrt+1 … dFrt+n] (4) 
 

An actual example of this is given below.  This describes 
the covariance for the LiftAction class from our robot data.  
The lift and gripper are two sensor readings from this data.  
The covariance is shown over time within the square 
brackets.  It can be noted that there is a peak of covariance 
at time point 7 (interpretation of results is discussed later in 
the paper). 
 
  LiftAction: lift,gripper[1.4, 1.1, 1.6, 1.0, 1.2, 1.4, 2.8] (5) 
 

Crucially, the variables used in this calculation can 
include spatial elements.  This would be achieved by first 
normalising the datasets and then placing values for 
absolute vectors.  Such variables can then be included when 
performing the trend analysis to ensure comprehensive data 
mining.  In this way, the technique can incorporate spatio-
temporal data mining; however, it can also be used with 
temporal data, without a spatial element. 

It is also possible to know, prior to the process of data 
mining, the total number of differential ratios that can be 
calculated.  For v number of variables, over time series (t= 
1 … t =n) this is given by; 
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With the use of this equation, a prediction of the length 

of the data mining process can be estimated.  Differential 
ratio data mining also has the feature of requiring only a 
single sweep of the dataset which can greatly increase the 
speed of the process.  This is unlike other techniques such 
as association rules [1] which require multiple sweeps over 
the dataset.  A single sweep over each dataset is all that is 
required since the covariance at each time point is 
calculated only once; that is, the differential ratios between 
time point t1 and t2, then t2 and t3 and so on to tn-1 to tn.  
Furthermore, the technique only requires that, at any one 
time, the ratios for two datasets are required in memory.  
Once the differential ratios have been calculated for those 
two particular time points, the earliest of the two time series 
ratios can be removed from memory.  For example, ratios t1 
and t2 create dFr1, then t2 and t3 create dFr2, hence when 
creating dFr2, t1 is no longer required and can be removed 
from memory. 

The algorithm describing the full data mining process is 
given in Fig. 2. 
 

 
 CreateDRR{ 
  r[1] = GenerateRatios(D[1]) 
  for i = 2 to number of datasets in D{ 
   r[i] = GenerateRatios(D[i]) 
   for each row in D[i-1]{ 
    where row index of D[i-1] = row index of D[i]{ 
     for j = 1 to column size D[i-1]{ 
      dFr[i].j = log(D[i-1].j / D[i].j) 
     } 
    }  
   } 
  }  
 } 
 
 with function; 
 ratios GenerateRatios(DataSet d){ 
  for each row in d{ 
   for all pairs (d.a, d.b)in D such that a ≤ b{ 
    r = d.a / d.b 
   } 
  } 
  return r 
 } 
 
Symbols used;  
     D[n] is the dataset at time point n 
     dFr[n] is differential ratio at time point n 
     r is ratios 
 

 
Fig. 2.  The differential ratio data mining algorithm 

 
B. Measuring variation: Interpreting the results 
 

For interpretation of the algorithm’s results, we will first 
explain what the measure represents.  For each dFrt 
extracted the following can be said about the ratio between 
variable x and y over time point t and t+1; 
 
dFrt ~ 0 Ratio has remained constant 
dFrt < 0 Ratio of difference has decreased over time 
dFrt > 0 Ratio of difference has increased over time 
 

That is, a positive dFr value indicates that the two 
variable’s values are growing further apart in terms of the 
two ratios over time.  A negative value is the opposite of 
this, that is, the two variable’s values are becoming closer 
together in terms of the two ratios over time.  A value of 
around 0 indicates that the ratios between the variables has 
barely altered over time; exactly 0 meaning no difference at 
all.  The magnitude of the measure also has a proportional 
meaning since the greater the value the more change has 
occurred.  For instance, a larger positive dFrt value means a 
larger difference in ratios over time, comparatively. 

Given such a measure, it becomes a simple process to 
automatically extract those objects that are displaying the 
most variation at any, or specific, time points.  One simple 
method is to filter out all those objects that do not contain a 
level of dFr at least once over the time series using a 
threshold constraint.  Similarly, a mean can be taken of 



each object’s dFr over time and a filter applied to those 
which, again, fall below a specified threshold criteria. 

The results of data mining can also be visualised to assist 
with interpretation.  Fig. 3 shows a simple line graph plot of 
some of the various differential ratios produced for the 
action ‘lift’.  Each line within the graph represents a single 
differential ratio for a pair of variables over time.  There are 
several smaller peaks at which covariance is occurring, 
however at time point 6 there is a clearly a large peak of 
covariance.  This is indicative of some interesting trend 
which would be flagged for further analysis. 

 

 
Fig. 3.  A simple visualisation of differential ratios for a single experiment.  

X-axis represents time, Y-axis represents covariance measured in dFr 
 

IV. EXPERIMENTAL METHOD 
 

The MIRA robot (shown in Fig. 4) performed fourteen 
actions; ‘turn left’, ‘turn right’, ‘forward’, ‘backward’, 
‘head up’, ‘move’, ‘head down’, ‘head right’, ‘head left’, 
‘pick’, ‘put’, ‘lift’, ‘drop’ and ‘touch’.  One action can 
consist of several basic subtasks, as described in [21].  
Sensor readings, such as velocity of wheels, gripper height 
and tilt of camera, were taken for sequences of actions. 
  

 
 

Fig. 4.  MIRA robot performing the pick action 
 

In order to provide sufficient training and test data the 
actions were performed 20 times under diverse conditions.  
For example, the speed the robot moved or the distance to 

the table was varied.  Sensor readings were taken every 
tenth of a second while MIRA performed these actions 
which provided a significant amount of data.  To reduce the 
size of the input to a manageable level, 10 sets of the 
readings were taken over time to represent the action.  We 
took the first, last and eight equi-distant sets of readings 
and combined them to create a single input for a sample.  
Finally, the data is normalised between 0 and 1. 

The data collected from the robot contained both discrete 
and continuous values.  The continuous data was for 
instance, velocity of the left wheel and the discrete data 
included the robot gripper state.  We represented the 
discrete data using values which partitioned the space in 
proportion to the amount of states.  Two sets of data mining 
experiments were conducted on the robot action data.  In 
each experiment, each action was used as a discrete class.  
75% of the sensor readings data was used to train and 25% 
was used as unseen data to test the classification accuracy.  
The experiments conducted were, (i) a back-propagation, 
multi-layer perceptron (MLP) neural network trained on 
normalised data, and, (ii) a back-propagation MLP neural 
network trained on results from differential ratio data 
mining performed on data. 

The back-propagation, multi-layer, feed-forward neural 
network is a supervised learning approach which involves 
training the network using both the inputs and the required 
outputs.  A MLP [13] organizes computational neurons into 
at least three layers, the input layer, the middle hidden layer 
and output layer.  The learning rule typically used for the 
multi-layer neural network is the back-propagation rule that 
allows the network to learn to classify.  This rule creates the 
output of the network, compares this with the required 
output and, by propagating the error back through the 
network, alters the weights to reduce the error [2]. This 
supervised neural network was selected as it is able to learn 
the salient features produced from the data mining in the 
first stage and produce output as pre-defined classes 
corresponding to an action.  The ability to recognise an 
action enables us to move towards the creation of a 
stereotypical behaviour derived from the training samples 
by identifying the main subtasks that form a single, 
complete action and so move toward imitation learning. 
 

V. RESULTS AND DISCUSSION 
 

The results of the data mining showed similarity within 
each class in terms of covariance peaks at given time points 
and in general terms of the overall ‘shape’ of behaviour 
extracted.  Fig. 5(a) shows four sets of results for the 
differential ratio’s extracted for the ‘put’ action.  From the 
graphs, it can be seen that there are several ‘peaks’ of 
covariance over time.  The peaks are highlighted in Fig. 
5(b) and correspond with the following decomposition of 
the ‘put’;  P1  - robot moves forward; P2 – robot decreases 
velocity; P3 - head-camera tilts down; P4 – robot continues 
to decrease in velocity and head tilts down; P5 – aligns 



gripper; P6 – close gripper and raise; P7 – detects object 
contained in gripper. 

 

 
(a) 

 
(b) 

 
Fig. 5.  Differential Ratio data mining results on ‘put’ action shown 

graphically.  (a) Several different experiments, showing similar patterns  
(b) Peaks of covariance labelled 

 
Several different architectures were selected when 

considering the classification accuracy of the two back-
propagation, feed-forward neural networks.  The number of 
input units was equal to the number of sensor readings (12) 
over time (10) which equates to 120.  The 14 output unit’s 
corresponded to each class of action.  The range in which 
an output was considered correct (boundary threshold) was 
introduced to analyse number of ‘strong’ class members 
compared with less strong.  Alterations to the number of 
hidden units were the biggest factor in change in accuracy; 
the optimum architecture is shown in Table I, listed in the 
third column, along with other details of results. 

The first two rows show the results of the neural 
networks with a boundary threshold of 0.1.  For example, 

for class 1 we would expect an output of ~1 for output unit 
number 1.  Using a boundary threshold an output in the 
range of 0.9-1.0 would be accepted as class 1.  Similarly, 
for boundary constraint of 0.2 an output in the range of 0.8-
1.0 would be accepted as class 1. 
 

TABLE I. 
EXPERIMENTAL RESULTS OF CLASSIFICATION OF ROBOT 

ACTION DATA 
 

Experiment 
with 
Neural 
Network 
Trained 
Using 

Input 
Units 

Hidden
Units 

Boundary 
Constraint 

% Correct 
Classification 
on Test Data 

Mean 
Squared 
Error 

Normalised 
Data 

120 60 0.1 52.0 0.26 

Data 
Mining 
results 

240 166 0.1 81.4 0.09 

Normalised 
Data 

120 60 0.2 75.1 0.26 

Data 
Mining 
results 

240 166 0.2 95.1 0.09 

 
The first set of experiments using the normalised data to 

train the neural network showed reasonable performance 
for wider boundary constraints, quickly dropping off as the 
boundary was constrained further.  The neural networks 
trained on the data mining results faired better, with an 
improvement of 20% over the normalised data only neural 
networks.  For the tighter boundary constraint they showed 
an improvement of 31% over the normalised data only 
neural networks.  Both neural network solutions fully 
encapsulated the behaviour over time for both experiments 
and therefore would be useful for imitation learning.   

As demonstrated, the data mining trained neural network 
encapsulated the behaviour in terms of difference in 
covariance over time and classified with high accuracy.   A 
further advantage of using this data mining technique is that 
the trends extracted are directly related to the original data.  
Each individual trend (shown as graph in Figure 4) 
represents the covariance between two variables which can 
be related back to specific attributes.  This differs from 
techniques such as PCA which reduce the dimensionality of 
the data without providing knowledge about specific 
attributes following the process.  Finally, the technique has 
also highlighted ‘points’ of covariance, and hence interest, 
within each action.  This is useful when trying to determine 
specific temporal points of possible interest. 

For imitation learning purposes, a particular behaviour is 
recognised through the observation of actions and the 
inputting of such data into the data mining neural network 
technique.  The student robot would then identify which 
action was being performed using the neural network 
previously trained from such actions.   



VI. CONCLUSIONS AND FURTHER WORK 
 

In this paper we have demonstrated the use of a hybrid 
neural data mining technique to classify robot action data 
for imitation learning purposes.  In doing so we perform 
data mining on data that encapsulates both spatial and 
temporal elements, whilst enabling a level of generalisation 
to occur to allow classification.  This is achieved through a 
hybrid approach that combines a data analysis technique 
with a neural network.  The initial data mining process is 
able to identify salient trends within the data over time 
which is then used to train a neural network to classify each 
type of behaviour. The technique has also highlighted 
‘points’ of covariance, and hence interest, within each 
action. 

To be effective, robots require the fusion of a significant 
amount of sensor data from multiple modalities, which are 
often noisy and incomplete in nature.  The use of data 
mining to identify the salient features is fundamental to 
improving the effectiveness of such robots.  It is our belief 
that this hybrid differential ratio data mining and neural 
network technique will be able to contribute towards this. 

Further work includes the possible use of rule extraction 
techniques to perform knowledge extraction on the neural 
networks trained with the data mining identified trends [14, 
15, 17].  These rules will further aid explanation of the 
classification process and can be used to create the required 
action in robots.  A comparative analysis with our proposed 
technique and the use of an MLP trained using Back-
Propagation Through Time and a recurrent network will 
also form future work. 
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