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Abstract – Recurrent neural networks (RNN) have been used 
in many applications for both pattern detection and 
prediction.  This paper shows the use of RNN’s as a speed 
classifier and predictor for a robotic sound source tracking 
system.  The system requires extensive training to classify all 
possible speeds to enable dynamic tracking of the most 
prominent sound within the environment. 
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I. INTRODUCTION 
Our ability to interact within our external environment 

using the various senses available to us has been of interest 
to people for many years, both in research to further 
understand the workings of the human system (neurological 
and physiological) [1-2] and for manufacturers, for the 
development of robotic systems.  Many researchers have 
looked into creating systems that are able to interact on 
social levels as well be able to navigate within the 
environment [3].  This paper describes a robotic system 
capable of sound source localization and tracking with 
prediction capabilities.  The motivation for this research is 
taken from the biological system which is able to accurately 
and speedily track multiple sounds of interest with respect to 
background noise. 

II. BACKGROUND 
Tour guide robots are one example of such ‘sociable’ 

robotic systems [4].  These tour guides move around their 
environment whilst avoiding obstacles they may encounter 
whilst also being able to interact with the people on a 
seemingly intelligent level by answering any questions that 
may be posed from the audience.  Sound source localization 
and tracking is an important task for such robots in order to 
improve their speech understanding capabilities.  For 
example due to the formation of the human pinna (ears) 
when trying to improve the signal of a speaker, we face the 
direction of the sound, this helps by improving the signal to 
noise ratio (SNR) by attenuating the surrounding sounds.  
This is also important as if we are surrounded by several 
sound sources we wish to only focus on the particular sound 

of interest and therefore reduce the signals from undesired 
sources.  Our aim is to develop the system with inspiration 
taken from that of the mammalian auditory system as 
mammals are extremely efficient in the way in which they 
localize sound sources with some animals reaching an 
accuracy of ±1o on the horizontal plane and ±5o with respect 
to elevation [5].   

III. MODEL 
The system consists of three separate stages in order to 

have the ability to track sound sources azimuthally, the first 
of which is the cross-correlation system.  The cross-
correlation part of the system is used to estimate the sound 
source position [6]. 

The second stage within the system enables us to 
determine to direction of motion of the sound source, i.e. to 
the left or right of the robots center position. 

Finally the third stage is the RNN neural processing 
stage used for the prediction of the dynamically moving 
sound source within the environment.   

A.  Cross-Correlation 
This stage calculates the angle of incidence of the 

detected sound source which is subsequently passed to the 
neural processing stage enabling a prediction  of the next 
location along the azimuth plane to be made.  

 
Figure 1.  Analysing two signals to determine azimuth 



Figure 1 shows the cross-correlation ‘window’ of the 
two signals received at the left and right microphones during 
stage one of the system.  Cross-correlation ‘slides’ the two 
signals g(t) and h(t) across each other and results in the 
creation of a product vector at each time sample step t, the 
maximum position of the correlation vector C therefore 
represents the position of maximum similarity or 
correlation.  The shaded area seen in Figure 1 shows the 
parts of the two signals g(t) and h(t) which are the same 
sound source only lagged from each other due to the 
separation of the left and right microphones. 
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Equation 1 shows the formula used to compute the 

cross-correlation of the two signals g(t) and h(t).  This 
creates a correlation vector which is analyzed to ultimately 
calculate the angle of incidence. 

B. Motion direction 
The second stage in the system is used for determining 

the direction of motion, i.e. whether the object is traveling 
left to right, or right to left thus allowing the robot to know 
in which direction to move.  This is achieved by analyzing 
the correlation vector C which results from stage 1 above.  
Depending on the position of the sound source (i.e. to the 
left or right of the center of the robot) will determine 
whether the maximum correlation position within C is to the 
left or right of the center of the vector itself. Thus, this result 
is used to set the direction of the motors for the movement 
of the robot.  Using this method reduces the need to for the 
network to process the left and right sides of the robot, 
taking into account the motion direction. 

C. Neural Processing 
This is the final stage of the system (and the main focus 

of this paper) which consists of the neural architecture for 
aiding in the prediction of the next location along the 
azimuth trajectory of the sound source. 

 
Figure 2.  Overview of System Architecture 

Figure 2 shows how the three separate stages of the 
system are connected and ultimately their order of execution 
within the time frame of the tracking of sound sources. 

IV. NEURAL ARCHITECTURE 
The neural architecture of the system has been 

developed using the application tool PDP++ [7] which is a 
research tool for the creation and development of many 
different types of recurrent neural networks.  PDP++ 
includes the learning algorithms and connection 
specifications for most types of existing networks. As well 
as the ability to create custom specs.  The recurrent neural 
network which was developed for our sound source tracker 
consists of four layers, they are: 

 
Layer 1 – Input – 45 Units 
Layer 2 – Hidden – 30 Units 
Layer 3 – Context – 30 Units – Provides Recurrence 
Layer 4 – Output – 45 Units 
 

The auditory localization of the system is capable of 
detecting sounds within 0o – 90o left or right of the centre of 
the system and an accuracy of ±1.5o.  Initial experiments 
were conducted with 20 input neurons; however this 
introduced a large variable error into the system as each 
neuron represented 4.5o of the environment space, therefore 
increasing the number of neurons to 45 reduced the possible 
error by 2.5o to 2o per neuron.  

The recurrent neural network system is constructed 
using the standard feed-forward back propagation weight 
updating.  However, to predict the next location within the 
trajectory the system needs to learn temporal patterns and so 
requires a form of short-term memory provided by the 
context layer to enable the prediction tasks [8] as is also 
evident within the human auditory cortex [5]. 

The hidden layer provides one-to-one projections to the 
context layer as shown in figure 3.  This enables the 
activation of the hidden layer at t-1 to be copied across and 
be available to the network at time t0.  Figure 3 shows the 
layout of the network in terms of number of neurons and 
projection direction. 

 
Figure 3.  Layout of recurrent neural network architecture used 



This architecture is that of an Elman recurrent network 
[9], where the hidden unit activations at time t-1 are used to 
provide the context for the system. 

The hidden layer provides this context by copying to the 
context layer via one-to-one projections whose weights are 
set to 1.0 so as to provide no negative or positive bias.  
However this particular architecture developed varies from 
the Elman network in its weight algorithms.  Here we have 
adopted the standard back propagation weight update 
algorithm: 

 jiij aw ηδ=∆  (2) 
where, η = 0.25 

 

As mentioned the one-to-one projection prevents the 
context unit activations being altered during copying and 
therefore they remain unchanged at t0 and are the same as 
the hidden layer activations at t-1: 
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V. THE METHODOLOGY 
When the system first detects the sound source at time t1 

the cross-correlation method of stage 1 (above) calculates 
the angle of incidence relative to the robots frame of 
reference.  The angle measurement is propagated to the 
neural stage of the system as the first input in the temporal 
pattern for the network to recognize and therefore ultimately 
predict the third location of the trajectory of the dynamic 
sound source and allowing the robotic system to ‘meet’ the 
acoustic object there.  As the network requires two angles 
before it can predict a third it is trained to only give an 
output when it has received two angle positions from the 
cross-correlation stage.  Only when angles at time t1 and t2 
have been presented to the network will their be activation 
on the output layer of the network and thus providing 
movement instructions to the robot and allowing the system 
to move to the predicted location of the sound source at time 
t3. 

VI. ENVIRONMENTS  
The system training environments used in the network 

have been set up to ensure the network will only respond by 
providing output activation after two consecutive time steps 
with valid patterns that are defined in the training sets, an 
example of the training sets are shown in table 1.  This 
therefore ensures the system remains temporal in its 
learning and prediction tasks.  That is, that only valid 
‘sequential temporal’ patterns will provide output activation 
as opposed to only one angle providing such output.  For 
example, box 1 shows the desired time-series output for the 
system given two consecutive input patterns. 

 
Box 1 – Shows an example of expected outputs for specific input pattern 

sequences. 
 

As is shown in box 1, upon the first presentation of an 
angle the system does not provide a prediction as it is 
unaware of the speed the object may be traveling due to ‘all’ 
system speeds having the possibility of the same initial bit 
pattern and therefore unsure of the target location.  Only 
after the presentation of the second angle can the system 
determine the pattern and provide a prediction for the next 
position of the object along its trajectory path. 

VII. TRAINING 
The training method for the recurrent neural network 

used is that of the standard backpropagation through time 
[9] algorithm with the weights between the hidden layer and 
its context layer being one-to-one with a value of 1.0 
(constant) as described by the Jordan/Elman network 
definitions [9]. 

TABLE I.  SAMPLE OF BIT PATTERNS FOR FIRST NINE SPEEDS. 

Speed Network input neurons 
All t1 10000000000000000000…….. 
1 t2 01000000000000000000…….. 
1 tn 00100000000000000000…….. 
2 t2 00100000000000000000…….. 
2 tn 00001000000000000000…….. 
3 t2 00010000000000000000…….. 
3 tn 00000010000000000000…….. 
4 t2 00001000000000000000…….. 
4 tn 00000000100000000000…….. 
5 t2 00000100000000000000…….. 
5 tn 00000000001000000000…….. 
6 t2 00000010000000000000…….. 
6 tn 00000000000010000000…….. 
7 t2 00000001000000000000…….. 
7 tn 00000000000000100000…….. 
8 t2 00000000100000000000…….. 
8 tn 00000000000000001000 …….. 
9 t2 00000000010000000000 …….. 
9 tn 00000000000000000010…….. 
 

To ensure the system learns the temporal states required 
each training pattern presented is stored as a sub-group 
within the training environment.  These events (input 

     IP   OP 
P1 
t1 100000 000000 <- no desired output
t2 010000 001000 <- predicted pos 
P2 
t1 100000 000000 <- no desired output
t2 001000 000010 <- predicted pos 



sequences) within each sub-group are presented to the 
network in sequence to maintain temporal order, whilst each 
sub-group is presented in a random order to ensure 
maximum fitting of the weights. 

For this particular application the weights were updated 
after each sequence was presented to the network as 
opposed to updating after each sub-group, as recommended 
in [10] this prevented the system oscillating with regards to 
the weights, the system also converges much quicker.  

Table 1 shows the bit pattern input for a sample of the 
first 9 possible speeds of motion the system was trained to 
recognize.   

As the robots coordinates frame of reference is always 
head centered then each speed always begins with the same 
starting pattern (I.e. t1 in table 1), therefore this reduced the 
amount of training patterns required for the system to learn 
as it was not required to train the network with all possible 
speeds at every possible input neuron. 

 
Figure 4.  Sample of training data for Speed 1 

Fig 4 shows the sample training environment for training 
the network to recognize the first speed in table 1 (note 
however that for purposes of presenting the diagram in this 
paper only the first ten input and output neurons are shown 
on the events.  However, this does not effect the information 
trying to be presented as only the first three neurons are of 
importance for the first speed).  Subsequent patterns were 
presented in the same manor, with nine events for each sub-
group giving a total set of events of: 

 

9events x 20sub-groups = 180 training events 

VIII. TESTING 
Once the system was fully trained two testing 

environments were created, the first environment contained 
1000 randomly generated events.  This environment was 
used to determine the networks ability to operate correctly 
even with spurious data.  For example, if the two temporal 
inputs where first to activate neuron eight on the input and 
then neuron six in that sequence the system should not 

provide an activation output as this would be an invalid 
sequence.  The second environment used was a set of 200 
manually created events.  These events contained valid 
temporal sequence information and were used to check the 
response of the system to the desired input and output. 

As discussed earlier in order to be able to predict the 
next possible location of the spatial object we need to be 
able to determine the speed at which the object is traveling, 
for this, two time increments are required, t1 and t2 for 
prediction of t3.  Figures 5 and 6 below show the first two 
time steps being presented to the network sequentially 
resulting in the desired output of the next position of the 
dynamic sound source determined by its current speed. 

 
Figure 5.  Input / Output of speed 1 at t1 

 
Figure 6.  Input / Output of speed 1 at t2 

At t1 the network presents the pattern ‘All t1’ shown in 
table 1.  As expected the output at this stage remains with all 
output neurons at zero activation, the pattern for speed 1 at 
time t2 is next presented to the network and the output 
position for the robot to attend to is provided as activation 
on the output layer see Figure 6. 

IX. RESULTS 
One of the required factors desired from the system is 

the ability for the network to provide the output within a 
restricted finite time increment so as to enable the robot to 
move to the position provided by output activation at time t3 



and be ready for the next input.  The network developed for 
our system was remotely installed on a Pentium 4 3GHz PC 
and received input and provided output via the use of 
program sockets. 

The two testing environments mentioned in section VIII 
were presented to the network and the output was recorded 
to file for analysis.  The randomly generated environment 
gave results of 92% as certain ‘random’ combinations of 
undesired sequences gave anomalous results, Figure 7 and 8 
shows one of the anomalies.  However, when the manually 
created ‘desired’ environment was presented to the network 
results were 100% this could be due to the second 
environment not reproducing the particular pattern that 
caused the anomaly. 

After ‘stand alone’ testing the network was connected to 
the robotic system.  Each sound sample was 20ms in length 
and recorded at 1 second intervals.  The system was able to 
actively track a dynamic sound source moving at a 
maximum speed of 34o per second, this was due to the 
restriction in the maximum speed of the current robot being 
used combined with floor friction. 

 
Figure 7.  Test w/random environment T1 

 
Figure 8.  Test w/random environment T2 

X. CONCLUSIONS 
The conclusions drawn from the results of these 

experiments have shown that a recurrent neural network is a 

viable and accurate method of predicting motion trajectory 
for a robotic sound source tracking system.  It has been 
shown that the system is capable of learning spatio-temporal 
information and using this to predict the next location of the 
stimulus within the environment.  The system was also able 
to adapt to varying speeds for the same source however it 
was not possible to calculate acceleration. 

XI. FURTHER WORK 
Work is now being conducted to enable the robotic 

tracking system to be able to learn on-line, that is, to be able 
to update its internal representation of the sound source 
within the environment therefore enabling a more ‘real’ 
representation of spatio-temporal motion within the 
environment in which it exists as well as a method for 
acceleration detection. 

 
Figure 9.  This shows the robot used for development of the 

system. 
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