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Abstract

This paper focuses on Hybrid Symbolic Neural Ar-
chitectures that support the task of classifying tex-
tual information in learning agents. We give an
outline of these symbolic and neural preference
Moore machines. Furthermore, we demonstrate
how they can be used in the context of information
mining and news classification. Using the Reuters
newswire text data, we demonstrate how hybrid
symbolic and neural machines can provide an ef-
fective foundation for learning news agents.

1 Introduction
With the expansion of the Internet, a need has arisen to design
more sophisticated learning agents which are capable of pro-
cessing relevant information. Much initial work in the field
of internet agents has used manual encoding techniques or
simple techniques from information retrieval[24]. However,
it becomes increasingly apparent that automatic adaptation,
learning, dealing with incompleteness and robustness are nec-
essary requirements[33]. Recently, there has been a new fo-
cus on machine learning techniques and language processing,
for instance for newswires and World Wide Web documents
[20; 21; 8].

Agents[3; 19] can be designed to perform various tasks,
whether they be classification[12; 23], information retrieval
and extraction[10; 8], routing of information[32; 30] or au-
tomated web browsing[2; 22; 7]. In general, robust learning
architectures have been identified as important current areas
for natural language processing[4; 9].

Statistical techniques have been shown to perform success-
fully in the classification of language[5]. When documents
are organized in a large number of topic categories, the cate-
gories are often arranged in a hierarchy. For instance, a naive
Bayes classifier is significantly improved by taking advan-
tage of a hierarchy of classes[18]. However, these statistical
methods require assumptions about the distribution.

Furthermore, self-organizing maps (SOMs)[14] have been
used. A SOM forms a non-linear projection from a high-
dimensional space onto low-dimensional space and has been
used in the WEBSOM project[13; 15]. The SOM algorithm
computes an optimal collection of models that approximates
the data by applying a specified error criterion; this allows

the ordering of the reduced dimensionality onto a map. The
SOM is acting as a similarity graph of the data and is useful
for structure visualization, data mining, knowledge discovery
and retrieval[1; 11].

Another approach has been proposed whereby artificial life
algorithms are applied in web-mining[19]. Adaptive and dis-
tributive algorithms seem to have the ability to capture the
complexities of such a dynamic and complex environment as
the World Wide Web, which can be regarded as a very large
database of heterogeneous documents.

In summary, most internet agents, for instance classifiers,
search engines, extractors, etc., still usead hoc heuristic cod-
ing rather than adaptive machine learning techniques. How-
ever, adaptive learning web agents using neural network
paradigms such as[27; 15; 30] hold a lot of promise as they
support robustness and learning, are relatively autonomous in
their learning behavior and offer the potential of on-line adap-
tivity. Our experiments with neural agents have been tested
on noisy, real-world data and benchmarked on corpora like
the Reuters corpus[30; 31]. In this paper we extend these
results to hybrid symbolic neural preference Moore machines
and demonstrate their results.

2 Preference Moore Machines as Modular
Agents

One main motivation for modular agent systems is that they
have a greater generalization ability, and classification tasks
and target functions may be reached more readily[26]. Fail-
ure of one component does not necessarily mean an overall
failure of the task, and indeed benefits arise from the commu-
nication between the various modular agents.

Another benefit is that such agent systems, for instance for
modular classification, could form their own representations
for a specific subtask. For example, mixture of experts ap-
proaches show that performance can be improved. For exam-
ple, though recurrent networks are able to encode sequential-
ity, finite state machines might be more robust in encoding
rules and relationships, and interaction between them could
give better generalization.

Recurrent neural systems not only are able to embody some
sort of contextual information, but they have the inherent abil-
ity to simulate any finite-state machine[16], essentially al-
lowing an abstraction of the information within a recurrent
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Figure 1: Relationship between Preference Moore Machines
and Recurrent Networks

neural network[25; 6] into discrete representations such as
grammatical rules and relations. This connection between re-
current networks and finite state machines can be exploited.

How is it possible to link the contextual information em-
bodied in a recurrent neural network with a finite state sys-
tem? There has been work on introducing Preference Moore
Machines[29]. Here we want to extend this framework and
bridge the gap between neural networks and such symbolic
machines.

A Preference Moore Machine is a synchronous sequential
machine that codes a sequential preference mapping, using
current stateS and the inputI preferences, to assign an out-
put preferenceO and a new stateS. A Moore Machine is
able to transduce knowledge from an input to output while
maintaining context.

Preference Moore Machines can be seen as neural net-
works (Neural Preference Moore Machine) or as symbolic
transducers (Symbolic Preference Moore Machine) as shown
in Figure 1. For a Neural Preference Moore Machine, the in-
ternal state of the system and the context are represented as
an-dimensional vector. Using the Euclidean distance metric,
different assignments can be made between this vector repre-

sentation and a symbolic interpretation.
As non-neural techniques, symbolic transducers are con-

sidered as symbolic Preference Moore Machines because
symbolic regularities are sometimes known. Rather than ex-
tracting them from training material, it is possible to encode
the relationships and generate a transducer from regular ex-
pressions.

Symbolically encoded and neurally learned versions of
preference Moore machines potentially represent very differ-
ent forms of knowledge, and can be seen as different agents
which can be combined as top-down and bottom-up models.
This leads to systems using different agents with different
representations. For a combination of such different prefer-
ence Moore machines, we described initial operations for the
integration of preference Moore machines[29].

Recently, we have shown that recurrent neural networks
can indeed act as robust and scalable classifying agents for se-
quential tasks such as the classification of a stream of textual
information of arbitrary lengths[32]. This work on neural
agents[32; 31; 30; 33] has shown that a single agent system
is a feasible approach to the task of textual classification. In
this paper, we develop a multiple agent system to explore the
possibility of coupling symbolic transducer agents with the
neural agents.

3 Symbolic Preference Moore Agent

3.1 Classification Material

One recent and well known news collection is the Reuters
text classification test collection[17]. This corpus contains
documents from the Reuters newswire. All news titles in
the Reuters corpus belong to one or more of eight main cate-
gories: Money/Foreign Exchange (money-fx, mf), Shipping
(shipping, sh), Interest Rates (interest, in), Economic Indi-
cators (economic, ec), Currency (currency, cr), Corporate
(corporate, co), Commodity (commodity, cm), Energy (en-
ergy, en). We use exactly all10 733 titles of the so-called
ModApte split of the Reuters corpus whose documents have
a title and at least one associated topic category. For our train-
ing set, we use1 040 news titles, the first 130 of each of the 8
categories. All the other9 693 news titles are used for testing
the generalization to new and unseen examples.

3.2 Construction of Transducers from Regular
Expression

The titles are symbolically tagged according to the most fre-
quent occurrence of the tag for a particular word. This results
in a sequence of tags of the form e.g.(en cm cm co co), which
represents a semantic tag sequence for a specific title.

Issues such as the exclusion of stop-words[32], stemming
and possible loss of information due to the rounding have
been considered previously; for example, in the case of the
removal of stop-words (i.e. insignificant words such as ’the’,
’a’, ’and’, etc., that may have an average distribution and are
domain-independent across all categories), it was shown that
there is only a little improvement in terms of classification ac-
curacy. However, it can also be argued that in a semantic se-
quence, stop-words may indeed have an important influence



since they may be an indication of a unique sequence; for ex-
ample, the ’of’ in the phrase ’Bank of England’, could bias
the sequence towards ’England’ if there are enough examples
of the phrase itself in a set of titles.

A regular expression is a very specific way of defin-
ing a pattern, and hence the rules of finding that pattern.
The regular expressions were incorporated into a finite-
state transducer using[28]. For the discussion example
shown in Figure 2, the regular expression would be denoted
as ((0 �en+mo+0 �)+), the ’*’ signifying that the symbol
should appear either never or at least once in the sequence,
the ’+’ meaning that the symbol should appear at least once
and the ’0’ simply standing for an arbitrary tag. The order of
the sequence is from left to right. Therefore, the transducer
would be able accept the sequence(0 en mo 0 en mo 0) but
not (0 mo en mo 0) as it explicitly expects(en) at the start
of a sequence followed by(mo) ultimately at the end of the
sequence.
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Figure 2: A transducer encoding the regular expression
((0�en+mo+0�)+) for classifying a specific sequence of tags
’en’ followed by ’mo’ into the ”energy” category. The tags
must appear at least once in a stream of symbols interspersed
with an arbitrary number of other tags - this transducer is
more robust for sparser representations (e.g. the body of a
newswire article or longer sequences from longer titles).

Figure 3 is a transducer able to handle sequences that are
encoded by the regular expression (co �mf �in+in�mf +)+) -
this only accepts sequences that are ambiguous, but being ex-
plicitly in the ” interest” category, one instance of the symbol
(in), followed by an arbitrary number of other (in) symbols,
and one instance of the symbol (mf) must be present for cor-
rect transduction to the appropriate category.

3.3 Experimental Results
We give examples from 3 semantic classes to illustrate our
experiments.

A Preference Moore Transducer was con-
structed that encoded the regular expression
(mf �cr�in�en�co�cm�ec�sh+sh�ec�mf �cr�in�en�co�

cm�ec�) for classifying the semantic sequence tags for the
category ”shipping” . The symbolic input sequences were
the tagged semantic titles described above. The transducer
was able to achieve 84% classification of the ”shipping” test
sequences.

A similar Preference Moore Transducer was con-
structed for the category ”energy” ; 94% correct clas-
sification was achieved by the regular expression,
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Figure 3: A transducer encoding the regular expression
((co�mf�in+in�mf+)+) for detecting a specific semantic
sequence of tags ’ in’ followed explicitly by ’mf’ that must
appear at least once in a stream of tags interspersed with an
arbitrary number of other symbols, in this example, ”co” and
”mf” , to give a transduction to the ” interest” category - this
transducer is able to handle a denser representation of seman-
tic sequences, with more specific rules, and also shorter se-
quences that have a very specific pattern or set of features

(en+co�cr�mf �in�ec�co�en+). A Moore Machine
for the category ”commerce” achieved 100% clas-
sification performance using the regular expression
(mf �cr�in�sh�en�cm�co+co�mf �cr�in�sh�en�cm�).
We were thus able to map the semantic relationships between
sequences via such symbolic Moore transducers, which are
able to maintain context during the mapping.

3.4 Evaluation of Results
In general, these initial simple symbolic machines perform
reasonably well, given the simple representation. However,
some semantic sequences from a particular category may
wrongly be classified for several reasons - for example, the
category allocations may depend on human-level interaction
that does not take into consideration strict semantic represen-
tation but rather a more heuristic allocation to a particular
category that may be arbitrary.

Also, the loss of information that may have taken place
from the conversion of the numerical occurrences to their
symbolic tags seemed to be minimal - the semantic tags did
indeed preserve the appropriate level of information for ac-
ceptable figures of accuracy to be achieved using our sym-
bolic Moore machines.

One basic heuristic in the construction of the regular ex-
pressions for the semantic sequences was to encode the pres-
ence of the category tag itself somewhere within the sequence
- i.e. it was assumed that in general, sequences would be
weighted towards having a greater number of the semantic
tags belonging to that of the category itself.

The semantic sequences for the ”commerce” category itself
were shorter on average in the Reuters corpus, and hence it
was less difficult to construct a transducer that would be able
to confidently encode for the sequences.

Table 1 shows some representative results; regular expres-
sions encoding the semantic preference rules were coded for
each of the 8 main categories. Data-sets of the symbol-coded
sequences were created. Using the specific Moore machine,



Category of COmmerce SHipping ENergy
Sequences Transducer Transducer Transducer
Commerce 100% 78% 64%
Shipping 10% 84% 10%
Energy 48% 30% 94%

Table 1: Performance of specific preference Moore machines
with various input sequences of semantic categories; the bold
figures (essentially the recall value for the transducers) show
that the specific rules designed to handle the respective se-
mantic sequences were performing well for the required cat-
egories.

we were able to achieve useful performance outputs. We
cross-tested the respective data-set collections with the trans-
ducers for the other categories - and this indicated that the
heuristic rules derived from the semantic sequences were in-
deed quite specific to the categories sequences themselves.
As was expected, the ”shipping” and ”energy” transducers
did not not work well with the ”commerce” data, whereas
”commerce” data with the shorter ”commerce” semantic se-
quences achieved 100% performance. However, ” shipping”
and ”energy” overlap with the category ”commerce” , hence
the values were high (this is desirable as it shows that the
regular expressions were indeed able to generalize). How-
ever, studying the results of the performance of the ”shipping”
transducer, it can be seen that ”energy” and ”commerce” are a
weak subset of ”shipping” , or that the specificity of the ”ship-
ping” category is such that usually there is a very low degree
of ambiguity.

Finally, we present the average recall and precision values
for a symbolic preference Moore Machine in Table 2:

Recall Precision
SPMM 92.66% 58.91%

Table 2: Average recall and precision values for the 3 example
transducers discussed.

With a simple symbolic preference Moore Machine, we
can reach good recall values while the precision is still un-
satisfactory.

4 Neural Preference Moore Agent

While a symbolic Preference Moore Machine is encoding
top-down knowledge, a neural Preference Moore Machine is
learning bottom-up. We briefly describe the various forms of
neural Preference Moore machine used: a neural preference
Moore machine with one context layer and a neural Prefer-
ence Moore Machine with two hidden layers (see Figure 4)
were trained using semantic vector representations at the in-
put layer.

Input representations are obtained to represent the plausi-
bility of a specific word occurring in a particular semantic
category. The main advantage is that they are independent of
the number of examples present in each category:
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Figure 4: A Neural Preference Moore Machine with 2 hidden
layers.

v(w; xi) =
Norm: freq: of w in xiP

j

Norm: freq: for w in xj

; j 2 f1; � � �ng

where:

Norm: freq: of w in xi =
Freq: of w in xi

Number of titles in xi

The normalized frequency of the number of times a word
w appears in a semantic category xi (i.e. the normalized cat-
egory frequency) was computed as a value v(w; xi) for each
element of the semantic vector, divided by normalizing the
frequency of the number of times a word w appears in the
corpus (i.e. the normalized corpus frequency).

The performance of the best trained neural Preference
Moore machines is shown in Table 3 with the recall and pre-
cision rates.

Evaluation Recall Precision
PMM 1 layer training 85.15 86.99
PMM 1 layer test 91.23 90.73
PMM 2 layers training 89.05 90.24
PMM 2 layers test 93.05 92.29

Table 3: Recall and precision for classifying newswire titles
using neural preference Moore machines.



5 Discussion and Conclusion

We have described two different types of Preference Moore
Machine agents - firstly, symbolic preference Moore ma-
chines based on finite-state automata theory which make use
of transducers, and secondly, neural preference Moore ma-
chines based on the distributed learning of neural networks.
We demonstrate that both approaches, though radically differ-
ent in their computational paradigm, can indeed produce two
related agent models that operate from a heuristically coded
top-down supervisory mode, and from a bottom-up unsuper-
vised mode.

Using the formalism that introduced Preference Moore
Machine integration [29], we demonstrate the potential for
integrating the different computational approaches on a stan-
dard real-world benchmarking corpus for the task of textual
classification and information-mining.

The agent system is able to interact via the Preference
Moore formalism and this allows different representations to
be combined complementarily; the important gain is in terms
of the robustness of the classification system as the transducer
agent is able to code in a more abstract manner certain rules
that the distributed recurrent agent may have missed; or con-
versely, the neural network agent may be able to correct the
more difficult rules that are not easily encoded via regular ex-
pression syntax. The symbolic agent is better able to handle
exceptions as manually coded expressions while neural clas-
sification agents would be able to handle difficult semantic
sequences.
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