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Abstract

This paper describes techniques for integrating neural networks and symbolic components into

powerful hybrid systems. Neural networks have unique processing characteristics that enable

tasks to be performed that would be di�cult or intractable for a symbolic rule-based system.

However, a stand-alone neural network requires an interpretation either by a human or a rule-

based system. This motivates the integration of neural/symbolic techniques within a hybrid

system. A number of integration possibilities exist: some systems consist of neural network com-

ponents performing symbolic tasks while other systems are composed of several neural networks

and symbolic components, each component acting as a self-contained module communicating

with the others. Other hybrid systems are able to transform subsymbolic representations into

symbolic ones and vice-versa. This paper provides an overview and evaluation of the state of the

art of several hybrid neural systems for rule-based processing.

1 Introduction

In recent years there has been an explosive growth in the successful use of hybrid intelligent systems in

many diverse areas such as robotics [34], medical diagnosis [45], speech/natural language understanding [97],

fault diagnosis of industrial equipment [2], monitoring/control of manufacturing processes [9] and �nancial

applications [50]. The main contributing factor for the development of hybrid systems has been the increased

use of neural networks for pattern recognition, classi�cation and optimization tasks [41, 42, 58]. The ability of

neural networks to perform tasks that would otherwise prove di�cult or intractable to symbolic computing

systems is now recognized and they are often used as modules within intelligent hybrid systems. The

activity of module integration has initiated the �eld of hybrid system development [51] which is one of the

most promising research areas for building intelligent systems.

Generally the reasons given for coupling neural and symbolic components involve such issues as reducing

the brittleness [43] of the rule-based component by incorporating the robustness of a neural network. This is

the well known \mesa e�ect" [13] which illustrates how most expert systems experience a sharp drop o� in

operational capability when confronted with novel situations for which no speci�c rules exist. Other reasons

include the lack of rule-based adaptability to changing external conditions which can only be addressed

through manual modi�cation of the knowledge base. However, by fusing the two techniques together in

tighter con�gurations a number of interesting opportunities arise for increasing the power of neural networks.
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These new opportunities come at the cost of increased operational complexity and computational overheads

but empower neural systems with symbolic processing abilities and vice versa.

Previous work reviewing the �eld of hybrid systems has been somewhat unconstrained since most of the

review e�ort has attempted to encompass very di�erent hybrid intelligent techniques [30, 40] e.g. neural

networks, rule-based systems, genetic algorithms and neuro-fuzzy logic. In order to give detailed techni-

cal descriptions of hybrid systems we focus upon those hybrid systems using the two most commonly used

elements, namely rule-based components and neural networks. The next section will review the main char-

acteristics of neurosymbolic systems, their general advantages/disadvantages and we will specify the most

powerful features which should be retained in a hybrid system. Section two will present the criteria used

to classify hybrid systems. Such issues as functionality, coupling and complexity will be discussed. Sec-

tions three to �ve describe the main features of the uni�ed, transformational and modular hybrid systems

respectively and several applications are given in each category. It is not the intention to give an exhaus-

tive description of all possible systems of hybrid integration but to highlight key developments in hybrid

neurosymbolic integration.

1.1 General considerations

The theoretical basis of hybrid system operation is based upon certain common operational similarities

between neural networks and rule-based systems. Table 1 shows these features.

Table 1: Correspondence between neural networks and knowledge-based systems

Activity Neural Network Symbolic Rule-Based System

Knowledge format Connections, network architecture Rules

Computation elements Nodes Premises, conclusions

Weights Rule strength

Thresholds Predicates

Processing Continuous activations Discrete symbols

Table 1 shows that neural networks and rule-based systems have di�erent methods to perform information

processing. There appears to be some similarity of function between the goals of the computation process

and this may suggest that the two techniques are not so di�erent. However, the distributed nature of neural

networks means that the internal nodes and associated weights have no individual conceptual meaning and

therefore cannot directly correspond to a rule or its antecedents.

However, both neural network and symbolic processing share the general working hypothesis that cog-

nition may be modeled by computation [82]. While neural networks are better suited to some tasks than

symbolic systems and vice versa it should be made clear that either computing technique can perform any

task the other is capable of. However, in this case the architecture and representation may not be very

e�cient. The issues that need to be considered when developing hybrid systems are related to the compu-

tational e�ciency, accuracy, problem formulation and knowledge representation suitability of the particular

computing technique for the task at hand. We have characterized neural networks as a subsymbolic com-

puting technique and rule-based systems as a symbolic computing technique. However, what does it mean

by saying that a system can reason subsymbolically or symbolically?

1.2 Subsymbolic representation characteristics

In this section we discuss the characteristics of distributed neural network processing. We have stated

that neural networks operate at a subsymbolic level. The basic units of information are continuous values
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computed by the individual neurons. The neurons output these values in response to the information

presented at their inputs. The inputs are numerical values and originate from either other neurons or from

the outside world, e.g. sensor readings or today's share prices. Several neural network con�gurations are

possible, such as feedforward, self-organizing and recurrent networks but they have common features. The

most important is the use of weighted connections for information storage. The information learned by a

neural network is held in the weights and biases as a result of exposure to the training set [31, 27]. The

information stored inside the weights consists of real-valued numbers and therefore neural network computing

can be classi�ed as a subsymbolic type of processing. The comprehensibility of this knowledge is further

compounded since the training set data is distributed over the internal weights. Neural networks have the

following features and advantages:

� Compact knowledge representation in the form of weight and threshold value matrices.

� Very fast and simple operation due to the above feature.

� They can operate with noisy or missing data and can generalize quite well to similar unseen data.

� They learn inductively from training data and their ability to process non-linear functionality is an

important feature for managing real-world data.

The strength of the neural network paradigm results from the distributed nature of the knowledge, i.e.

the learned patterns are stored across all weights and thresholds. This property is known as superposition

and enables the e�cient storage and recall of individual patterns. By the same token any individual weight

or thresholds with a suboptimal value is unlikely to contribute to an incorrect classi�cation. Also noisy input

patterns that do not deviate too much from the training patterns will result in good classi�cations. However,

neural networks also have their limitations:

� They may need lengthy training times and may not necessarily converge to an acceptable solution.

� The use of random weight initializations may lead to di�erent solutions.

� Neural network topology design is by empirical means, several attempts to develop an acceptable model

may be necessary.

� They have limited explanation facility which may prevent their use in certain applications.

� It is di�cult to incrementally add new knowledge and may be di�cult to share knowledge with other

networks.

In general, the architecture of a neural network, i.e. the number of layers and the number of units in

each layer is not a decomposable object. The network is of a distributed nature so that no particular neuron

actually encodes a speci�c concept or feature. This is the main reason for the restricted ability to transfer

learning tasks between networks. The inability to isolate the encoded input features means that the network

must be considered as a monolithic block. For example, if we had a neural network trained to recognize

every aircraft type built by European manufacturers we could not directly extract a subnetwork to recognize

the subtask of identifying only French or Italian aircraft. Furthermore, it is only possible to add features

if additional training is provided. Adding extra training examples may cause problems unless re-training is

carried out using the original training set along with the new examples, otherwise \catastrophic interference"

may occur [78].
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1.3 Symbolic representation characteristics

A symbol is a discrete token that represents some concept, feature or entity that within the context of the

computer program can be manipulated and transformed along with other symbols. The transformations

performed upon the symbols enables new relationships to be expressed that ultimately may lead to the

solution of a problem. This is the basis of the physical symbol systems hypothesis [65] which states the

requirements for general intelligent action. The meaning attached to these symbols occurs as a result of the

operations and the human interpretation process. The designer of a system is able to attach labels to the

symbols and thus most of the interpretation is carried out by a human being. The external environment

of signals and other computing systems may also provide a degree of interpretation in which case symbol

grounding will play a role [38, 72, 73].

In addition to processing carried out at the level of symbols there exists the possibility for suitably

complex systems to reason at a higher level called the knowledge level [66]. The knowledge level is a rather

abstract notion that occurs as a result of the interaction between symbol structures and their processes; it is

independent of the symbol level which is used to implement it. The problem solving ability of many symbolic

systems is based on state space search [65] in which a state represents the progress towards �nding a solution

at a single instant in time. The state space often has a high dimensionality; i.e. the input variables cause

a combinatorial explosion. Heuristic search can be used to address this problem, where a heuristic refers to

an informal procedure that provides a short cut to exhaustively testing all possible solutions [70]. Often a

heuristic search procedure cannot guarantee to discover the optimum solution but it will provide reasonably

good several candidate solutions.

There are a number of symbolic representation methods such as frames, semantic nets, object-value-

attribute triples and rules. Rules are probably the most common form of knowledge representation and they

are present in most AI applications such as expert systems and decision support systems. The rules in most

symbolic systems are produced by human experts as a result of a lengthy knowledge engineering process

[57] or based on machine learning programs [74]. Rules are useful for the following reasons: Rules can be

interpreted easily and can be subject to mathematical rigor, i.e. formal logic. The use of rules enables

modular systems to be built and a lot of human reasoning can be expressed as rules.

Rules also have some disadvantages: Rules are brittle when presented with noisy data that contains

unexpected values or incomplete data with missing values. Also data with nonlinear relationships may be

di�cult to express by rules. Rules do not scale up very well and inconsistencies and errors may occur.

Furthermore, manual encoding of rules is time consuming and expensive [57].

The main cause of brittleness within rule-based systems is the requirement that every possible combi-

nation of antecedents and their values must be explicitly provided. Otherwise the system will fail when

presented with novel combinations of input data. For example consider the following case:

IF (temperature > 60) AND (temperature = rising) OR (temperature > 70) THEN alarm = on

For cases where the temperature is less than 60 but rising or when the temperature is 65 but is dropping

further rules are required to account for this. Thus in order to cope with the complexities of real-world data

a practical symbolic system must have a large number of rules to account for the most common cases that

should occur. Except for smaller, restricted applications it is most unlikely that any given rule-based system

will be robust or complete enough (i.e. have su�cient rules) to provide reasonably correct answers when

presented with deviant input.

The key features that would be desirable are: the ability to reason with noisy and incomplete data and

to learn incrementally from new experience. The ability to generalize and to explain the chain of reasoning

motivates the exploration of hybrid techniques. Having described the characteristics of subsymbolic/symbolic

computing and how these features arise we are now in a position to consider how they may be coupled together

to form hybrid systems.



Neural Computing Surveys 2, 62-93, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 66

2 CLASSIFICATION OF HYBRID SYSTEMS

There are several possible ways of describing the features of hybrid systems based upon functionality and the

degree of inter-connectivity. An entire continuum of integration techniques is possible and not all will neatly

�t into the prede�ned categories. This is part of the richness of hybrid system development. Several schemes

for classifying hybrid systems currently exist and most schemes concentrate upon a narrow de�nition and

cannot fully describe all characteristics a system may possess. First, the motivation for providing a new

scheme based upon the latest developments in hybrid technology shall be given.

2.1 Prior approaches towards classi�cation of hybrid systems

There have been some attempts for describing hybrid architectures in the past. Probably the earliest scheme

proposed by Medsker [61] is concerned with the degree of coupling between neural network and expert system

components. Medsker has de�ned the classes of loosely, tightly and fully integrated systems to describe the

degree of coupling between the modules. In loosely coupled systems the communication is performed by

shared �les while tightly and fully integrated models use shared memory structures. In a strict sense the

two remaining classes, i.e. standalone and transformational methods cannot really be classi�ed as hybrid

systems. In the standalone model the neural network and symbolic elements are separate and there is

no interaction between the components. The transformational model merely checks for the most e�cient

implementation method through duplicating the development work by building both a rule-based system and

a neural network. Medsker's classi�cation scheme only covers the degree of coupling and makes no attempt

to describe the module hierarchy or con�guration of a hybrid system.

The classi�cation scheme proposed by Hilario [40] has two hybrid classi�cations for integration, namely

the uni�ed and hybrid approaches. The hybrid approach integrates separate symbolic and neural elements

using four distinct classes based upon the 
ow of data between the modules and has two degrees of coupling

(loosely and tightly coupled). The term \hybrid" as used by Hilario confers little descriptive advantage since

all the systems she describes are hybrids. Those systems classi�ed under the uni�ed approach use neural

networks to implement all the processing activities including those normally reserved for symbolic ones. The

theoretical basis for a system implemented entirely by neural network elements is provided by the evidence

from neurobiology and cognitive science. The main issue is that the symbolic processing capabilities of

the human mind originate with the low-level, �ne grained processing carried out by biological neurons. A

number of such systems have been developed [75, 76, 84]. The term \uni�ed" is fairly descriptive and has

been retained within our classi�cation scheme.

Goonatilake and Khebbal [30] have de�ned their scheme on the basis of functionality, architecture and

communication requirements. This scheme is more general than Medsker's scheme and can therefore be

applied to systems with components other than neural and symbolic elements. The authors have based

their scheme upon the motivations most users have for building hybrid systems and as a result have decided

upon a three class scheme. The authors have used the terms function-replacing, intercommunicating and

polymorphic to describe the major groupings of hybrid systems. The polymorphic class is similar to the

uni�ed class of Hilario [40]. However, the function-replacing class rather belongs as a sub-class within the

intercommunicating class. The term function-replacing is quite descriptive of the purpose and actions carried

out by the hybrid system, e.g. using a neural network to replace the inferencing engine of an expert system

but intercommunicating is a redundant term since all hybrid systems no matter what their purpose must

communicate. A review of hybrid methodologies was presented in [87].
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2.2 Motivation for a new classi�cation scheme

Several hybrid classi�cation schemes exist, with di�erent terminology and objectives but with some degree of

overlap of description with the other schemes. Therefore, what can be gained from having a di�erent view?

First, we believe that our scheme ties together several threads from the other classi�cation schemes into a

consistent approach and that recent developments in hybrid technology require a new perspective not covered

by existing schemes. Second, by having a common approach to classifying hybrid systems the developers of

such systems will be in a better position to describe the operation and aims of their systems while others will

be able to evaluate such systems with a clearer understanding of the computing and information processing

issues. Hybrid system development is in a continual state of advancement and our scheme may represent

another stage in the development of hybrid systems.

Analysis of the current state of the art in hybrid systems has led us to believe that a comprehensive

classi�cation scheme can be composed of three major groups. This grouping occurs naturally because of the

con�guration of the internal modules and the conceptual understanding of the processing required that occurs

within any given hybrid system, e.g. those systems classi�ed as uni�ed require a change in the conceptual

understanding of symbolic processing since these activities are performed by a neural architecture. The

terminology we have used is based on the most common descriptions but we have extended terms wherever

necessary. While there have been related hybrid classi�cation schemes, e.g. for hybrid language systems [98],

here we focus on hybrid rule-based systems.

The �rst group, \uni�ed hybrid systems", consists of those systems that have all processing activities

implemented by neural network elements (see �gure 1). Such systems may be classi�ed under the uni�ed

approach. So far these systems have had only limited impact upon real world applications, due to the com-

plexity of implementation, issues of model scalability and rather limited knowledge representation capability.

However, given the relative novelty of the �eld we can expect further technical improvements and innova-

tions. The second group of systems can transfer a symbolic representation into a neural one and vice versa,

see Figure 1. It is with the second category, \transformational hybrid systems", that hybrid systems begin

to demonstrate some unique properties. The most interesting feature is the ability to insert, extract and

re�ne symbolic knowledge within the framework of a neural network system. The third category of \modular

hybrid systems" covers those hybrid systems that are modular in nature, i.e. they are comprised of several

neural network and rule-based modules which can have di�erent degrees of coupling and integration. An

important aspect is that they do not involve any changes regarding the conceptual operation of either the

neural network or rule-based elements. The vast majority of hybrid systems fall into this category. The main

reason is that they are powerful processors of information and are relatively easy to implement. For the

purposes of consistency and to assist with the description of the various hybrid systems we have produced

the diagrams with a uniform appearance, the symbolic rule-based components are block shapes while the

neural network elements are oval in shape.
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Figure 1: Hybrid system classi�cation
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3 UNIFIED HYBRID SYSTEMS

The work of researchers such as Feldman [19, 20], Ajjanagadde [4, 5], Smolensky [82] and Shastri [79] has given

important insights into why neural networks are suitable for implementing higher cognitive functions usually

associated with symbolic processes. Other work in the �eld has shown the necessity for symbolic structures

to carry out intelligent information processing [21, 15, 37]. Dor�ner [16] discusses the implications of \radical

connectionism" which is a bottom-up approach to modeling intelligence and identi�es several properties that

neural network structures must possess. The advantages to be gained by combining symbolic structures with

the inductive power of neural networks has been more atomized by the construction of hybrid systems that

use specialized neural network elements for the implementation of symbolic functions.

text

texttext

texttext

Global Lexicon

Symbol 1

Symbol 2

Symbol 3

Figure 2: Symbolic recirculation within a uni�ed hybrid system

A key feature of neural networks in general is the distinction made between localist and distributed repre-

sentations. This di�erence is used within uni�ed systems to create levels of hierarchy. A local representation

employs individual neurons to represent a concept or feature while the distributed representation stores

knowledge over a number of units [17]. In addition, a network based upon local representations is e�ected

less by the \catastrophic interference" phenomena [78] and therefore can learn incrementally. However, a

distributed representation is more robust in the presence of noise because several neurons contribute to the

overall classi�cation accuracy, while in a localist scheme any error may lead to an overall classi�cation failure.

The learning mechanism employed by distributed representations generally requires a longer training

time consisting of repeated iterations of the training set. Localist networks require a shorter training time

where some networks may only need a single exposure to the training set. Uni�ed hybrid systems often have

their symbols encoded within a global lexicon which enables them to be created dynamically during training.

A process called symbolic recirculation may occur within a uni�ed network through the activity of learning

[63]. See Figure 2 for a hybrid system of �ve networks that uses distributed symbols for its input and output.

Symbol recirculation enables symbols encoded as distributed representations to be updated with new values

based upon its relationships with the other symbols in the global lexicon.
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3.1 Uni�ed CONSYDERR for evidential robust reasoning

CONSYDERR stands for CONnectionist System with Dual-representation for Evidential Robust Reasoning

[85, 86] and is a uni�ed hybrid system with a two-level neural network system that reasons subsymbolically

using a distributed representation and symbolically using a localist representation. The architecture was

designed to have two di�erent levels in order to overcome the brittleness and uncertainty involved with

knowledge based systems. The inspiration is derived from the assumption that human cognitive processes

are formed from di�erent levels of processing. Although CONSYDERR is implemented entirely by neural

networks, it is able to reason symbolically by a carefully designed hierarchy of levels. The bottom level

consists of microfeatures, which are �ne grain elements implemented by nodes that have linkages to the

higher concept nodes in the top level. Figure 3 shows the hierarchy and the sequence of phase activations.

Localist concept level

Distributed concept level�

B
B

A

1
11 1

1

1
1

1

2 2

2

3

Figure 3: CONSYDERR hybrid system

The system operates in a three phase cycle that begins with a top-down phase that activates the dis-

tributed representations in accordance with those distributed nodes connected to nodes at the localist level.

Phase two consists of a settling operation that has the activations from the localist level propagating down

to the distributed level. The lateral links within the distributed level which represent similarity between

the distributed representations now cooperate with the local concepts at the sub-conceptual level. Phase

three initiates a bottom-up propagation of activations that eventually results in the inferencing of new con-

cepts. Every node in the system corresponds to a concept or feature and may have several connections to

the other nodes according to the relationships between concepts. A high level symbolic interpretation may

be assigned to each node depending upon the current pattern of activations. Further work implementing

metaphor interpretation has enabled CONSYDERR to learn [85]. While previously CONSYDERR had to

have its concepts and microfeatures hand-coded.

3.2 Uni�ed RUBICON for rule-based processing

The RUBICON hybrid system by Samad [76] incorporates both distributed and localist forms of neural

network architecture. The integration of both types of architecture enables the representation of complex

knowledge structures that are able to manipulate structured information. RUBICON was designed with
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the goals of reducing the knowledge acquisition bottleneck problem and of reducing the brittleness problem

normally associated with expert systems. Compared with the other uni�ed systems described in this section

RUBICON operates conceptually more along the lines of a traditional expert system with rules, clauses,

attributes and values. Internally, the neural network architecture is more or less invisible to the user.

text

Antecedent
collection layer

Rule layer

Value output
layer

text

Attribute output
layer

text

Attribute input
 layer

Consequent layer

Antecedent layer

texttext

text

Value input
layer

text

text

texttext

text

Value specific
 layer

Attribute specific
 layer

Figure 4: RUBICON architecture

The system consists of a number of layered networks. This is necessary to provide the low level \micro-

features" that correspond to the components of the rules, see Figure 4. The input and output layers are

composed of distributed architecture units while the other layers consist of localist networks. The local-

ist networks enable the dynamic creation, modi�cation and deletion of the internal knowledge structures.

The conversion mechanism from a localist to a distributed representation is achieved quite simply. The

distributed output layer is composed of activations from winner-take-all-layers. RUBICON is partitioned

into two communicating components: an attribute section and a value section. This separation enables

the creation of the speci�c format of the rules implemented by RUBICON; namely rules consisting of an

antecedent clause and a consequent clause. Each clause may have a variable number of attribute-value pairs

and the architecture enables the assertion and retraction of clauses. In addition, negated expressions are

supported.
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Currently, RUBICON does not manage real-valued inputs. This will be a major shortcoming for any

industrial, scienti�c or technical task that deals with continuous real-world data. Unfortunately, variable

binding which enables a form of symbolic reasoning similar to expert systems to occur has not been imple-

mented. The author does provide details of how it could be implemented within the RUBICON framework.

Further work based upon the internal architecture of RUBICON was implemented as the search facility

of a large knowledge-based system integrated within a knowledge acquisition tool for building expert sys-

tems. The browser based upon a localist/distributed architecture overcomes certain limitations of this expert

system tool.

3.3 Uni�ed SC-NET for dynamic rule-based processing

The SC-NET of Hall and Romaniuk [75, 33] is a hybrid network that operates upon attribute value pairs

and has certain similarities to RUBICON. SC-NET is applied to the twin spirals problem and an industrial

diagnosis problem. The main form of internal data structure within SC-NET is the cell. A cell is similar

to a typical neuron in the sense that it is comprised of an activation function, a threshold function, and

associated set of weight values for each connection. The output activation levels are constrained to take

three values; 0 for false, 0.5 for unknown and 1 for true. A key feature of SC-NET is a dynamic cell growth

algorithm that creates concept nodes when needed. The RCA (recruitment cell growth algorithm) is active

during training. Depending upon the severity of error calculated for a given exemplar a new cell will be

recruited.

Whenever possible, similar concept cells will represent similar exemplars, otherwise generalization perfor-

mance will su�er. However, even relatively simple learning problems such as XOR can result in the growth

of a large number of nodes. Figure 5.a and Figure 5.b show the network created by exposure to the �rst

exemplar in the XOR problem, demonstrating how cell creation proliferates very quickly. Two types of

variables are implemented within SC-NET: a fuzzy variable designed to process continuous information and

a scalar variable to process symbolic information. The cell growth is necessary in order to implement the �ne

grain \microstructure" which is necessary to represent variables. However, it is possible to prune the size of

the �nal network by the global attribute covering algorithm (GAC). This routine analyzes the relationships

between the cells and their associated links using various measures of quality to assess their importance prior

to optimization. The process of reducing the size of the network also improves the generalization capacity

because the simpli�ed network will apply to more cases.

input1

(a) network created from
first exemplar

(b) final network

XOR XOR

input1 input2input2

Figure 5: SC-NET implementation of XOR function
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3.4 Summary

Uni�ed hybrid systems implement the symbolic processing capabilities of a rule-based system by neural

network elements. The motivation for this line of research is that certain forms of rule-based processing

can be carried out by a neural network. The use of localist and distributed representations allows the

generalization capabilities of neural networks to be supported by the ability to assign conceptual meanings

to individual neurons or groups of neurons. Currently, most uni�ed systems do not appear to scale-up

e�ectively to support real-world problems, although research in this direction is continuing.

4 TRANSFORMATIONAL HYBRID SYSTEMS

The transformational models are able to convert an initial symbolic domain into a modi�ed neural network

architecture or vice-versa. The transfer process can be a complete compilation of all information from one

form into another or it may create intermediate stages. The transformational process creates special oppor-

tunities for building hybrid systems that can operate between the two levels of neural/symbolic knowledge

representation. Such bi-directional 
ows of information enable an iterative process of knowledge insertion,

extraction, and re�nement to be carried out upon symbolic data that resides within a neural network archi-

tecture. The symbolic knowledge is often represented as rules but automata [28, 29, 67, 68, 99] and grammars

may also be used.

An important capability of transformational hybrid systems is the possibility to build architectures that

confer the bene�ts of both symbolic and neural processing in a single system. Such hybrid systems are

essentially neural networks but are generally sparsely connected and the neurons correspond to high level

concepts. The networks are able to learn in a process that is similar to supervised networks by means

of training examples and often use gradient descent algorithms. In addition, these systems are also able

to manipulate the initial architecture and domain knowledge of the neural network, hence they are often

described as knowledge-based neural networks [89]. These transformational architectures possess a number

of interesting high level features that enable neural networks to perform the following functions:

� The possibility of incremental learning, which means that the neural network need not be retrained

with all previous training data in addition to newly, acquired data. New classes may also be included

in addition to new training samples for existing classes.

� The inclusion of prior knowledge will have the e�ect of speeding up the learning process and will be

useful in those situations where training examples are scarce. This is called the knowledge insertion,

extraction and re�nement stage in many systems [89, 62].

� A more deterministic architecture is possible rather than the empirical process that must occur with

multi-layer perceptron networks in order to discover a very good architecture, i.e. the number of layers,

hidden units etc.

� The reasoning and classi�cation operations are rendered more transparent, although some knowledge-

based neural network architectures (KBNN) require a further process of symbolic rule extraction [90].

The experimental work carried out by a number researchers on di�erent knowledge-based neural network

architectures has produced some impressive results [54, 23]. They show good performance in terms of

classi�cation accuracy, speed of training, reasoning with noisy and missing data and good generalization

capability with small training sets. Figure 6 illustrates the knowledge insertion, extraction and re�nement

phase that is incorporated in many transformational hybrid systems. The use of prior domain knowledge in

the form of rules can be used to de�ne the architecture of an initial neural network. The network can be

re�ned by inductive learning when supplied with examples. This may entail changes to the original topology,

weights and biases. The learning algorithm may be a gradient descent type such as backpropagation with

modi�cations to account for the sparse number of connections found in KBNNs. The improved performance
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of the neural network can be used to re�ne the initial rule base by a process of knowledge extraction from

the neural network. The nodes and connections of the KBNN correspond to the symbolic meaning of the

initial domain knowledge and are easily converted back into a symbolic format. The entire process can be

repeated several times until the system shows an overall improved performance.

texttext

Neural learning

Training
examples

texttext

Refined networkInitial network

Rule insertion Rule extraction

Domain
knowledge

(rules)

Refined
rules

Figure 6: Cyclic rule extraction, insertion and re�nement

The combination of using domain knowledge and inductive learning has proved to be a major factor in

the success of transformational systems. The next two subsections describe the techniques used to implement

the processes that occur within transformational hybrid systems.

4.1 Neural to symbolic transformation

A direct way of converting neural to symbolic knowledge is through rule extraction. This process provides a

limited form of an explanation facility of how a neural network may classify any given input pattern. Rule

extraction is a process that discovers the hyperplane positions of the input-to-hidden units and the hidden-

to-output units of a neural network. These positions are then formulated as IF..THEN rules with the most

important input unit labels acting as the rule antecedents. The discovery of the hyperplane positions can be

found by a number of techniques that analyze the weights and biases of the neural network. Rule extraction

can be carried out with a variety of neural network types such as multi-layer perceptrons [92, 10, 11, 14],

Kohonen networks [93], radial basis functions [7, 48] and recurrent networks [67].

In recent years there has been a great deal of interest in exploring techniques for extracting symbolic

rules from neural networks [6]. The bene�ts of extracting rules from neural networks are:

� Provision of an explanation facility by examining extracted rules for various input con�gurations.

� De�ciencies in the original training set may be identi�ed, thus the generalization of the network may

be improved by the addition/enhancement of new classes.

� Analysis of previously unknown relationships in the data. This feature has a huge potential for data

discovery/mining and possibilities may exist for scienti�c induction.

� Once having extracted rules from a neural network we have a rule base that has the potential to be

inserted back into a new network with a similar problem domain. This is similar to the heuristics

given to expert systems. Also like the heuristics the extracted/inserted rules may be re�ned, as more
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information becomes available about the problem. This process may be a step in the right direction

towards alleviating the so-called knowledge acquisition bottleneck.

An important part of rule extraction is concerned with the preprocessing of the derived rules and is a

process that must be carried out to ensure that a compact set of good quality adequately describes the initial

neural network.

� Rule subsumption: when rule extraction algorithms operate they may generate more rules than are

actually required to describe the neural network. Subsumption is a way to reduce the number of such

super
uous rules by checking for more general rules. A rule can be said to subsume another if it is

more general than one or more speci�c rules. In this case the speci�c rules can be deleted.

� Rule resolution: if two or more rules have the same number of antecedents and the same conclusion

but di�er by one antecedent being a negation then they can be resolved into a single rule.

Extracting rules from a trained neural network is not the same as using decision trees or some similar

symbolic rule-based induction program directly upon some data set. The reason for this di�erence is that a

well-trained neural network has the capacity to generalize, i.e. to correctly identify similar but previously

unseen data. That means, the information extracted from the neural network is an abstraction of the initial

training set. In addition, further distortions are introduced by the nonlinear nature of the neural network

learning algorithm.

Neural networks that have learned a complex input-output mapping may not be appropriate for transfor-

mation into symbolic rules [92]. The extracted rules may not be able to express the input-output mappings

in a concise way. This means that probably all rule extraction methods have limits on what they can describe

and there will always be a degree of abstraction. While extracted symbolic rules may be less precise they also

provide a higher abstraction from the network knowledge. Sometimes extracted rules might also perform

better than a network, although this is not necessarily the case.
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4.2 Symbolic to subsymbolic transformation

One technique that can convert a symbolic representation into a subsymbolic representation is to create a

neural network topology without the requirement to discover the optimum parameters experimentally. It is

possible to generate a decision tree [12] from the neural network training data that e�ectively enables the

number of units in a two hidden layer neural network to be pre-determined. The non-leaf nodes correspond

to the number of hidden units required in the �rst layer while the leaf nodes correspond to the number of

units in the second hidden layer. The non-leaf nodes perform hyperplane tests while the leaf nodes act as

class labels. Figure 8 shows a decision tree generated from data which is then used to specify the architecture

of a neural network.
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Figure 8: Symbolic to subsymbolic conversion

Having determined the topology, the neural network may be trained by backpropagation or a similar

algorithm. The main advantage of this method is the time and e�ort saved in avoiding the exhaustive

testing of di�erent neural network topologies to obtain an acceptable solution. It is also possible to embed

neural elements within a decision tree architecture [94]. These Perceptron trees integrate linear threshold

units (LTU) within each leaf node of the decision tree. A similar technique exists that uses sigmoid functions

in place of the LTUs and is called an entropy net [77]. The tree-based neural net (TBNN) system of Ivanova

and Kubat [46] generalizes quite well when compared with other inductive learning systems when classifying

unseen data. TBNN appears to operate conceptually along similar lines to KBANN as both systems create

partially connected, approximately correct networks. TBNN uses a numeric version of ID3 to generate the

tree structure. All real-valued attributes are transformed into intervals and a fuzzi�cation scheme is used

improve the accuracy of the interval classes.
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4.3 Transformational KBCNN for rule insertion and extraction

The Knowledge Based Conceptual Neural Network (KBCNN) of Fu [24, 25] can revise and learn knowledge

by translating the initial domain rules into a network. Figure 9 shows how the initial rules from the domain

knowledge were transformed into a neural network. The functions of the knowledge base and the inference

engine are combined into an entity called a \conceptualization" where an individual neuron represents a

concept and the inter-neuron links represent relationships between the concepts. In addition, KBCNN

provides a bi-directional 
ow of information between the neural network and rule-based elements. A rule

can be mapped into a network and vice-versa. Some changes have been made to the learning algorithm so
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Figure 9: A KBCNN network

that the neural architecture may be modi�ed adaptively. The hidden units are used to represent concepts

extracted from the rule base antecedents. The concepts are then clustered and those hidden units covering

the same space are removed. This compacting of the network simpli�es the search routines by removing

redundant units. KBCNN has been tested on a real-world genetic database for recognizing gene promoters

in DNA strings. KBCNN was able to revise the domain theory by discovering the gaps in the initial

knowledge after examining the training set. KBCNN is an improvement of earlier KBNN systems developed

by Fu through the incorporation of revision of incorrect rules and a more e�cient knowledge representation

system.

4.4 Transformational KBANN for rule insertion and extraction

The KBANN (Knowledge Based Arti�cial Neural Networks) system developed by Towell and Shavlik [89]

seeks to translate a set of approximately correct rules into a neural network architecture. The system is able

to make these mappings by taking advantage of a number of conceptual correspondences between knowledge

bases and neural networks. KBANN consists of two distinct algorithms: the �rst converts the rule base into

a feedforward network and the second algorithm re�nes the neural network. The initial rules are in the form

of logic-like notation which may be rewritten so that the disjuncts have only one antecedent. This process is

required to simplify the rules to network translation and also maintains the rule hierarchy. Having translated

the rules into a network structure, a modi�ed version of the backpropagation algorithm is used to re�ne the
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networks parameters (weights and topology) and as a result nodes may be added or deleted, see Figure 10.

The authors present results of operation that are quite impressive compared with purely symbolic or neural

techniques. The authors performed a series of tests that demonstrate KBANN's superiority and e�ectiveness

in the presence of noise against several other learning techniques such as standard backpropagation, Cobweb,

EITHER and Labyrinth-K. The KBANN system is able to recover from incorrect initial domain knowledge

while at the same time dealing with spurious training examples despite fewer training samples.
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Figure 10: KBANN hybrid system

4.5 Transformational MACIE for dynamic rule creation

One of the earliest knowledge based neural network systems is MACIE developed by Gallant [26] to diagnose

medical conditions. Referring to Figure 11 the architecture is essentially a feedforward one with connections

existing between layers and within layers. MACIE was developed with the aim of alleviating the knowledge

acquisition bottleneck by using the inductive powers of a neural network to generate a model from examples

and also to reduce the brittleness of the inferencing engine. MACIE's inferencing engine is implemented by

a three-layer neural network and has the ability to reason with partial information. The neurons or cells

as Gallant describes them are organized into input, hidden and output layers that encode for symptoms,

diseases and treatments respectively.

Additional cells may be added to improve generalization by the learning algorithm during training. The

output values of the nodes are constrained to take values of +1, 0 and -1 to encode for concepts of true, false

and unknown. In addition to both forward and backward inferencing MACIE also uses the neural network

for �nding unknown input variables and giving justi�cations for any inference made. MACIE has a number

of limitations, for example it is a requirement of the training algorithm (pocket algorithm) to specify the

correct activation of every unit in the network. Although this characteristic is not an disadvantage of the

medical domain task where the hidden units encode for speci�c diseases it will cause problems for potential

applications that requires an input-to-output mapping. Despite the serious drawbacks MACIE documents

an important �rst step towards knowledge-based neural networks.
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Figure 11: MACIE hybrid system

4.6 Transformational Expert networks for rule re�nement

The Expert Network system proposed by Hruska et al [44] is an attempt to re�ne an initial set of sparse

rules gained from the domain expert. This is another system designed to overcome the knowledge acquisition

bottleneck. The initial rule base is mapped into nodes representing antecedents, and the interconnections

represent the certainty factors. By using a combination of training algorithms the accuracy and robustness

of the initial rules is greatly improved. The authors test their system upon the wine advisor database but try

to demonstrate its e�ectiveness by pruning nodes and connections and retraining the network for its ability

to reconstruct its knowledge base.

Figure 12 shows the architecture for the 4-2-4 encoder/decoder problem. The nodes are not the typical

feedforward multi-layer perceptron (MLP) neurons since this system is event-driven and the nodes possess

such features as internal states, processing states and a simple multi-tasking communication facility that

is able to detect the states of the other nodes. Referring to the diagram we can see that some nodes are

dedicated to the functions AND and NOT. The system always attempts to expand the number of rules

to reduce the complexity of any given rule. This simpli�es the functionality of a node but obviously the

number of rules can grow quickly in a real-world task. The implementation of the expert network creates

a much larger matrix (for weights, biases and connection details) than those created in typical MLP type

networks, the network in Figure 12 has 16 which creates a matrix of 16 x 16. Further work upon the training

algorithms (backpropagation) [54] demonstrates its capabilities with reasoning with partial knowledge and

noisy or missing data. A detailed analysis has been carried out showing how expert networks are able to

generalize better than neural networks and why they require fewer training examples [23].
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4.7 Summary

The transformational models are a successful technique for integrating the characteristics of neural networks

and rule-based systems. The main function of a transformational system is to convert one representational

technique into another. Rule extraction from neural networks may give some combinatorial problems but

this e�ect can be reduced with rule subsumption and rule resolution. Most of the transformational systems

discussed consist of a neural network architecture that is able to assign conceptual meaning to the links and

units. This enables prior domain knowledge (if it exists) to be inserted into the network. Prior knowledge

of a task may assist in the learning of new tasks by speeding up training times or in those situations where

data is scarce. This prior knowledge may then be re�ned through the use of learning algorithms operating

upon additional data. Several transformational systems have been developed some of which are able to cope

with the demands of real-world tasks.

5 MODULAR HYBRID SYSTEMS

Several features characterize modular hybrid systems. The most obvious characteristics are the hierarchy

of module con�guration. The con�guration determines the complexity of information 
ow between the

modules. Sequential 
ow implies that one process must be completed before data may be passed on to the

next module. Parallel 
ow may involve simultaneous operation upon data or even feedback between the

modules that can in
uence the course of future processing. Depending on the particular task the complexity

of modular systems can vary greatly. Some systems consist of only a few modules with simple coupling and

limited information 
ow between them. Some modular hybrid systems are more complex and are composed of

many modules. As hybrid systems technology has matured, more complicated and sophisticated systems are

beginning to be developed. Complexity can be measured in terms of information 
ow between the modules,
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which can be uni-directional or bi-directional. Another characteristic is the degree of coupling between the

modules. This is again determined by how the modules are con�gured. Coupling can be identi�ed as loosely

coupled, tightly coupled or interleaved.

5.1 Module con�gurations

Depending on the processing requirements a hybrid system may take a number of architectures, see Figure

13. The neural network and rule-based components are used to implement the various functions required.

Some of the newer and larger hybrid systems have many neural and symbolic modules connected in di�erent

con�gurations.
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IF...
THEN...
ELSE

(a)  Sequential Processing

(b)  Parallel Processing

Figure 13: Hybrid system processing con�gurations

� Sequential con�guration: The main feature of this con�guration is the serial processing of data as it is

passed from one module to the next. One module acts as a preprocessor of data extracting the required

features into a form suitable for the next module. A neural network could act as a preprocessor for a

rule-based system by converting signal level information into a form more suitable for symbolic level

decision making. It is also the case that a rule-based module can preprocess data for a neural network

by identifying the relevant parameters for the appropriate input units.

� Parallel con�guration: In this con�guration a neural network and rule-based system operate in parallel

on some common data. The reason for this approach is to compare the classi�cations obtained for

greater con�dence and reliability. Another possibility for parallel operation is where the neural network

and rule-based elements operate on di�erent data but combine their results for an overall classi�cation.

Parallel con�gurations have the capability to use feedback of information from the output of one

module into the input of another enabling a more sophisticated degree of control to be implemented.

Time/sequence dependent information may be used to alter the operation of the system.



Neural Computing Surveys 2, 62-93, 1999, http://www.icsi.berkeley.edu/~jagota/NCS 82

5.2 Module Coupling

The criterion selected to describe the coupling in our classi�cation scheme is based upon the degree of com-

munication activity between the modules and information 
ow. The simplest being passive coupling and the

most complex and interactive being interleaved integration. Figure 14 shows three types of communication

activity possible for a hybrid system.1
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Figure 14: Hybrid system coupling

� Passively coupled: The simplest method of integration is called passively coupled because of the almost

autonomous existence of the neural and rule-based components. The method of communication is

usually by a data �le shared by the components. After the �rst module �nishes its computation it

deposits the results in a �le to be read by the second module. Passive coupling does not require

any sophisticated handshaking control to synchronize the modules since the 
ow of communications is

normally uni-directional and all the data is usually deposited in a single action. A typical con�guration

would involve a neural network processing an input data stream and saving the output unit activations

as vectors/arrays stored in a �le.

� Actively coupled: Actively coupled systems are more complex than passively coupled models since

communication is by means of shared memory/data structures and so greater e�ort must be taken to

ensure module synchronization. Inter-module communication by shared data structures enables faster

runtime performance and allows more sophisticated messages to be passed. Communications can be

bi-directional enabling feedback to occur between the modules, which allows a module to alter its

operation based on its e�ect on another module. The use of feedback enables the behavior of a system

to be dynamically alterable which in certain hybrid system applications such as speech understanding

and industrial process control is necessarily based on changing external conditions.

1The passive, active and interleaved categories of coupling roughly relate to Medsker's hybrid classi�cation scheme [61] based

upon the loose, tight and fully coupled categories.
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� Interleaved: The communication occurring within interleaved systems operates at the �ne-grained level

of function calls, the modules are highly active with a large degree of module interaction. Again, the

use of feedback plays an important part of interleaved strategies. Interleaved systems have a greater

capacity for interaction. An interleaved system integrates the strengths of neural networks within

rule-based systems by replacing various symbolic modules with neural components. Externally, the

individual neural network and symbolic modules cannot be di�erentiated within such fully integrated

architectures. To enable such an integration to occur, interleaved hybrid systems must implement

a specialized communication protocol. The protocol must be sophisticated enough to manage a di-

verse range of inter-module commands and data exchange formats required for sequential and parallel

operation.

Several modular hybrid system applications will now be described to illustrate the con�guration and

coupling possibilities. The systems will be presented with increasing orders of interaction.

5.3 Sequential passive coupling in a vibration spectrum analyzer

The architecture of the vibration spectrum analyzer system represents the simplest of the modular hybrid

architectures. It consists of a sequential, feedforward con�guration that is coupled by function calls. The

data processed by each module must be completed before it can be passed on to the next module. Data

feedback or partial computations are not possible with this particular sequential architecture. The block

diagram of the system is shown in Figure 15.
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Figure 15: Vibration diagnostic hybrid system

The diagnostic hybrid system [60] is designed to detect and report bearing faults in heavy rotating

machinery such as large motors and fans. The diagnostic information is based upon vibration data gathered

from sensors connected to the various items of plant under observation. A great deal of preprocessing must

be carried out since the raw vibration data has a high dimensionality and only a small fraction can be used

to train the neural networks.

The preprocessing module reduces the dimensionality of the raw input spectra by selecting the most

important parameters, which are easily calculated using heuristics. The transformed data is then passed

onto the neural network module, which is designed to detect a number of bearing faults. A neural network

is required for this task since several faults exhibit the same symptoms. The output of the neural network is

interpreted by a rule-based diagnosis module which provides details of the faults and is also able to provide

trend analysis.

A number of di�erent neural network models were trained and tested on data generated by a specially

built test rig and later using real world data. The system performed well using multi-layer perceptrons
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and later radial basis functions were tried with equal success leading to several large-scale projects [2]. A

similar hybrid project using Kohonen networks is the vibration diagnostic system of Kirkham [52]. This is

a more complex system and has the potential to use symbolic knowledge from clustering carried out by the

Kohonen network. Other similar systems include the medical diagnosis hybrid system of Hudson [45] and

the ultrasound inspection system of Kang [49].

5.4 Parallel active coupling in a neural network inferencing engine

The hybrid system developed by Tirri [88] was developed to assist the inferencing engine of an expert system

by a set of trained neural networks. The hybrid system requires parallel interaction to occur between its

modules and therefore employs active coupling. The system consists of three knowledge bases: a rule base,

a fact base which contains the working memory and a neural network of several trained radial basis function

networks (RBF) [64, 69, 71]. Each neural network corresponds to a speci�c symbolic predicate in the system.

In fact, neural networks perform the tasks normally carried out by rules in a conventional knowledge-based

system.
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Figure 16: Neural network based inferencing engine

During operation the neural network associated with a particular predicate carries out a classi�cation test

that is essentially a logical test on its input data. The end result is a conversion process that translates the

input data into symbolic facts. Such newly 'discovered' relationships are added to the fact base. The neural

network conversion process only operates when the standard symbolic inference engine cannot correctly

classify the input data. Figure 16 shows the relationship between the neural and symbolic elements as the

execution of a rule with a Boolean predicate occurs. Should the fact base contain information that is proved

to be incorrect by the system failing to �nd a satisfactory conclusion then it is possible for the RBF network

to undergo dynamic retraining. The adaptive process is carried out upon the RBF network with the data and

the correct classi�cation label, the characteristics of the RBF are well suited for online, fast and incremental

learning. Similar systems include the CONKAT medical diagnosis system of Ultsch [93] and the robotic skill

acquisition system of Handelman [34].
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5.5 Parallel interleaved integration in a CBR/NN data analysis system

The hybrid system developed by Lees et al [56] uses a case-based reasoning (CBR) [1, 55] module interleaved

with several neural network modules. The system requires interleaved integration since the neural network

modules undergo �ne-grained, on-line manipulation of their parameters. The system is intended as a tool

for data mining and knowledge discovery within large databases. It has been used successfully in two

large real-world domains: Analyzing oceanographic data for the prediction of ocean parameters and a civil

engineering design project. Figure 17 shows the interaction between the neural network module and the

CBR module. The neural network module provides the CBR adaption phase with the ability to learn. The
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Figure 17: CBR and neural network module interaction

characteristics of the radial basis function (RBF) network are useful for a real-time application. Rapid

learning and insensitivity to the order of the training patterns are the main requirements. The dashed lines

in Figure 17 illustrate the 
ow of data between the neural network and the CBR module. The 
ow of

information within this module can run in parallel with the symbolic CBR element.

The CBR cycle consists of four basic operations: The �rst phase requires that the satellite data stored in

the case base is used to generate cases. The problem cases are generated from the current sensor readings.

The retrieve phase searches the case base and matches the closest case with the current problem case. The

reuse phase sees the RBF networks parameters that were calculated from the most recent forecast taken

from the network database and used with several other cases. The RBF network is then able to learn from

a number of cases rather than a single best case. During the revise phase, the new forecast is modi�ed

according to the accuracy of the previous forecasts and new con�dence limits are calculated. The forecast

is then described in the form of upper and lower intervals. The forecast is placed in temporary store until

actual measurements taken from the ocean are made and compared with the predicted values. Depending

upon the accuracy of the forecast it may be discarded or saved as a new case for future use.

An important feature of this hybrid system is the interaction between the RBF network and the rest of

the system. The RBF network is able to transfer its learned knowledge for further use to the CBR module.
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This initial RBF network will have its knowledge updated by retraining upon new data. The use of prior

domain knowledge and inductive learning is a powerful combination for use as an adaptive module. Similar

hybrid systems using a CBR module is the hybrid CBR of Yao [101] and the knowledge extraction system

of Egri [18].

5.6 Parallel interleaved integration for speech and language analysis

The SCREEN (Symbolic Connectionist for Robust EnterprisE for Natural language) hybrid system was

developed to learn the acoustics, syntax, semantics and pragmatics of spoken language [96]. Due to the

complexity of this task SCREEN requires an interleaved architecture for learning spoken language analysis

[98]. The analysis of speech is more complicated than the understanding of written text due to its inherent

irregularity such as pauses, repetitions, the use of poor grammar and unforeseeable semantic constructions.
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Figure 18: SCREEN spoken language analysis system

The architecture of SCREEN has six functional parts and each one consists of a mixture of neural network

and symbolic modules. Some modules operate sequentially while others operate in parallel and require

feedback from other cooperating modules as they process information. Flow of information starts initially

with the speech construction part. In this module sentences are constructed from word hypotheses generated

from a speech-recognizer. The speech evaluation part computes the syntactic and semantic plausibilities

required for selecting the best sentence hypotheses. The category part performs a syntactic and semantic

analysis at word and phrase level. The correction part deals with errors and repairs them. The dialog act

processing uses knowledge at the dialog level to assign an utterance to a particular act, e.g. accept, reject or

suggest. The case role processing part provides the ability to retrieve the analyzed utterances for later use.
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Figure 18 shows a simpli�ed architecture of the SCREEN system. Control within the SCREEN system is

symbolic but most modules are based on neural networks. The interface between the neural network and the

symbolic modules is by a common message type structure that can support parallel and sequential processing.

Externally, each module communicates using this structure and no di�erence is made between neural network

and symbolic module communication. Through this interleaved communication SCREEN can symbolically

represent the information processed by feedforward and recurrent networks. The communication mechanism

is similar to that provided by the hybrid chemical analysis system CONNCERT of Wilson and Hendler [100],

which uses symbolic supervisors to oversee the processing of neural networks.

SCREEN works incrementally, which allows the system to integrate knowledge sources very early. The

use of recurrent neural networks within the category assignment module provided a means of automating

the syntactic and semantic knowledge acquisition process. The recurrent networks also provided a method

of identifying those relationships and regularities in the speech data not easily captured by symbolic rules.

Another innovation is the reduction of noise that is introduced by the human speaker and also through the

speech recognizer itself. A speech correction part consisting of several interleaved neural network/symbolic

modules was developed to overcome this. The system is able to remove pauses and repetitions of words by

symbolic means. The analysis and repair of words/phrases is a more complex task and is implemented by

neural networks.

Experimental work showed that the recurrent networks were able to give good generalization accuracy

and were quick to train. Also, SCREEN required few training examples and compared quite well with a

symbolic based system and with other hybrid systems using neural networks [98]. The main reason for

SCREEN's robustness is the use of neural networks for those speech analysis tasks that are noisy and require

good generalization capability.

Similar systems dealing with the complexities involved with speech/natural language understanding in-

clude the SCAN system of Wermter [95] which was designed to 
at scanning for written texts. The TRAINS

planning system of Allen [3] can reason about time, actions and events within a natural language framework.

The PARSEC system of Jain [47] uses neural networks for the control of sentence parsing and symbolic

structures for performing the necessary transformations.

5.7 Summary

Modular hybrid systems are the most common and powerful type of hybrid systems. However, a continuum

of modular system complexity exists that is dependent on the degree of coupling and inter-module commu-

nication required by the application. Many of the earlier systems only required a limited uni-directional

channel of communication between the modules. Some more complex newer systems have been developed

to manage tasks with a high degree of dimensionality. Such systems consist of several cooperating modules

with several channels of communication often including some form of feedback. Although modular hybrid

systems communications may become complex, the individual modules still remain conceptually as separate

neural network or rule-based elements.

6 CONCLUSIONS

This paper has reviewed some approaches of hybrid systems in terms of how systems composed of neural

and rule-based elements may interact. Three categories of hybrid systems have been identi�ed, namely the

uni�ed, transformational and modular types. Each hybrid type is carrying out its own particular subsymbolic

to symbolic data manipulation and information 
ow. In order to give a greater appreciation of the need

for hybrid systems the necessary background knowledge of the strengths and weaknesses of neural networks

and symbolic systems has been reviewed. The importance of the underlying theoretical considerations of

subsymbolic/symbolic computing is often neglected. We have tried to place the various hybrid architectures

in context with their underlying connectionist/symbolic representations.

The choice of which hybrid architecture to use is highly dependent upon the task. For example, if only a

simple interpretation of neural network output units is required then a modular hybrid system with sequen-
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tial coupling will be appropriate. Modular hybrid systems scale up quite well and a system can be composed

of many connectionist and symbolic modules performing a variety of tasks in di�erent con�gurations. Trans-

formational architectures become useful when prior domain knowledge in symbolic form is available. This

knowledge can then be enhanced with training examples through the inductive learning capabilities of a

connectionist network. One of the most promising techniques in the transformational hybrid category is

symbolic rule extraction from neural networks. Rule extraction can act as a bridge between the connec-

tionist and symbolic levels conferring several bene�ts the most important of which is giving connectionist

networks an explanation facility.
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