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Abstract. In this paper we describe a new approach for learning spontaneous language for multiple domains using arti-

ficial neural networks. This approach is basedon a novel use of flat syntactic and semantic representations, fault-tolerant

processing of noisy spontaneous language, and learning of individual domain-dependent subtasks. This approach has

been implemented in our parallel and incremental architecture SCREEN (Symbolic Connectionist Robust EnterprisE

for Natural language) which we have based on a careful selection and interaction of symbolic modules and artificial

neural networks. We present the learned syntactic and semantic categorization and we examine the potential for in-

creasing the portability by focusing on multiple corpora and domains. We claim that the general properties of learning,

fault tolerance, and flat representations as implemented in SCREEN have the potential to increase the portability of

neural network-based systems for spontaneous language analysis.

1 Introduction

Recently, the field of artificial neural networks for language
processing has seen a new emphasis on working towards
real-world speech/language systems. Early work on neu-
ral networks had successfully focused on carefully designed
artificially generated training material, e.g. for various lan-
guage tasks [8], case role assignment, [4, 6], sequence pro-
cessing [2, 7], and rule induction [5]. However, in most
cases neural network techniques have not yet been exam-
ined under hardreal-world constraints of unrestricted nat-
ural language. This is the topic of this paper and we show
that artificial neural networks have the potential to deal with
real-world spontaneous language input.

In our previous work we used hybrid connectionist tech-
niques for learning a flat understanding oftext language
[13, 14, 15]. After flat learned analysis could be used suc-
cessfully for relatively well-formed text analysis [13] we
moved stepwise to the analysis of less well-formed spon-
taneous dialog analysis [12, 17]. In this paper we de-
scribe new extensive experiments and results of learning
a screening flat understanding of spontaneous real-world
dialog language in multiple domains and we present the
learned syntactic and semantic categorization from our sys-
tem SCREEN.

The general properties which have been incorporated into
the SCREEN system are 1) neural network learning, 2) fault
tolerance, and 3) a screening flat representation. Learning
reduces the amount of knowledge engineering and increases

portability. Fault-tolerance is needed for dealing with errors
in spontaneous language like pauses, interjections, repairs,
and repetitions. Flat representations are needed for support-
ing portability and the analysis of syntactically or semanti-
cally anomalous spontaneous language. We will start by
developing the basis for a learned robust flat analysis. Af-
terwards, we will describe our results for a flat syntactic and
semantic analysis for the domain of interactions at a railway
station counter using the RTC corpus1. Then we will use the
same neural network learning techniques and as much of the
underlying system concepts as possible for a new different
domain of meeting arrangements using the BMC corpus2.
Typical sentences in the RTC and BMC domains are:

� Yes I need eh a a sleeping car PAUSE from PAUSE
Regensburg to Hamburg (RTC corpus)

� Oh yes right but I have from nine to four already a date
therefore I would perhaps PAUSE suggest Thursday
(BMC corpus)

First, we will give an overview of the used syntactic cate-
gories. Since we address the general problem of represent-
ing spontaneous language we have to take into considera-
tion the incremental properties of language processing. In

1Corpus compiled at the University of Regensburg (FRG) containing
travel inquiries.

2Corpus compiled at the University of Karlsruhe (FRG) containing
meeting arrangements (also called Blaubeuren dialogs).



particular, spontaneous language can contain repairs, repe-
titions, interjections, pauses, new starts and many other hes-
itation errors. Therefore, building a deep structural interpre-
tation will be much less successful than for text understand-
ing and analyzing relatively well-formed sentences. Fur-

Category Examples Category Examples
Noun train, track adJective early, cheap
Verb need, go Adverb) very, perhaps
pReposition from, to Conjunction and, or
pronoUn I, you Determiner the, a
nuMeral one, two Interjection eh, oh
Participle taken Other particles
pause (/) pause

Table 1: Elements of the basic syntactic category vector

Category Examples

VerbGroup would like to have
NounGroup a ticket
AdverbialGroup later, as early as possible
PrepositionalGroup to Hamburg, in the morning
ConjunctionGroup and, either ... or
ModusGroup interrogatives, confirmations: when
SpecialGroup additives like politeness: please, then
InterjectionGroup interjections, pauses: eh, oh

Table 2: Elements of the abstract syntactic category vector

thermore, we want to start to process language incremen-
tally without waiting until a complete utterance has been
finished. Because of the hesitation errors and the incremen-
tality of language we designed a flat representation of spon-
taneous language at various basic and abstract levels. Ta-
ble 1 shows the basic syntactic categories as they have been
used for the RTC corpus; table 2 shows the abstract syntac-
tic categories. Rather than having arbitrary deep syntactic
representations we have a flat basic and an abstract syntac-
tic representation consisting of category vectors with 13 re-
spectively 8 categories for the representation of the syntac-
tic categories of a word.

Similar to the syntactic representations we represent the
flat semantic meaning by using basic and abstract semantic
categories. Table 3 shows the basic semantic categories as
they have been used for the RTC corpus; table 4 shows the
abstract semantic categories.

In summary, we have developed a new flat category rep-
resentation for processing spontaneous language. Since
spontaneous language contains many hesitation errors, un-
grammatical constructions, restarts etc., a flat representa-
tion at different interpretation levels supports the learning
of a robust fault-tolerant processing.

Category Examples

NEED need, would like
MOVE go, ride
STATE know, exist
AUX can, could
SAY say, ask
QUESTion question words: which, when
PHYSical physical objects: train, wagon
ANIMate animate objects: I, you
ABStract abstract objects: connection, class
HERE time or location state words, preps.: on, in
SouRCe time or location source words, preps.: from
DESTination time or location destination words, preps.: to
LOCation Frankfurt, Hamburg
TIME tomorrow, at 3 o' clock
HOW with, without
NEGation no
NILL words “without” specific semantics, e.g. the

Table 3: Elements of the basic semantic category vector

Category Examples

ACTion action for full verb events: go, need
AUX-action auxiliary action for aux. events: would like
AGENT agent of an action: I
OBJect object of an action: a ticket
RECIPient recipient of an action: to me
INSTRument instr. for an act.: using a high-speed train
MANNER how to ach. an act.: with switching trains
TiMe-AT at what time: in the morning
TiMe-FRoM start time: after 6am
TiMe-TO end time: before 8pm
LoCation-AT at which location: in Frankfurt
LoCation-FRoM start location: from Dortmund
LoCation-TO end location: to Hamburg
QUESTion question phrases: at what time
MISC miscellaneous words, e.g. for politeness

Table 4: Elements of the abstract semantic category vector

2 Overview of SCREEN

So far, we have described the flat syntactic and seman-
tic representations at the basic and abstract levels. We
will now show how these flat representations are integrated
in our system SCREEN. SCREEN stands forSymbolic
Connectionist Robust EnterprisE for Natural language and
deals with fault-tolerant learning of spontaneous natural
language. Figure 1 gives an overview of the six parts in
SCREEN as well as a more detailed description of five es-
sential modules in the category part.

In general, the six parts in SCREEN are the speech se-
quence construction part, the speech evaluation part, the
category part, the correction part, the case frame part and
the subclause part. The speech sequence construction part



is responsible for receiving the word hypotheses from a
speech recognizer and for building sentence hypotheses
based on these word hypotheses. The speech evaluation part
provides an evaluation of the syntactic and semantic plausi-
bility of a sequence. The category part is the part for learn-
ing flat syntactic and semantic category representations and
our major focus here for examining portability for differ-
ent domains. The correction part is responsible for detect-
ing pauses, interjections, word errors, and phrase errors in
the form of repetitions and repairs as well as for eliminat-
ing them from the current parse and the final interpretation.
The subclause part and the case frame part are responsible
for distinguishing multiple case frames for sentences with
several subclauses.
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Figure 1: Overview of SCREEN with a focus on the category part

All modules in SCREEN - like the five shown in figure 1
- communicate via symbolic messages and can contain ei-
ther symbolic representations or trained connectionist net-
works. The module BAS-SYN-DIS (BAS-SEM-DIS) re-
ceives a word as part of a sequence, looks up its basic syn-
tactic (semantic) category representation, and provides a ba-
sic syntactic (semantic) disambiguation using the preceding
context. For instance, for the word “train” the lexicon can
contain the basic syntactic categories “verb” and “noun”.
However, in a particular sequence like “I need a train” the
syntactic category has to be “noun” depending on the previ-
ous context. For representing the preceding context we use
simple recurrent networks [2]. BAS-SYN-DIS (BAS-SEM-
DIS) performs this basic syntactic disambiguation and pro-
vides input for the module ABS-SYN-CAT (ABS-SEM-
CAT).

ABS-SYN-CAT (ABS-SEM-CAT) is responsible for the
abstract syntactic categorization, according to the abstract

syntactic (semantic) categories shown in table 2 (4). The
modules for abstract categorization receive a representation
of a disambiguated word in a particular sequence and pro-
vide an abstract syntactic and semantic category represen-
tation. For instance, in a simple sentence like “we meet in
the morning”, “we” would be a noun group, “meet” a verb
group, and “in the morning” a prepositional group. Finally,
the module PHRASE-START receives the disambiguated
basic category representation of a word and supplies hy-
potheses about the phrase boundaries of a sentence since
ABS-SYN-CAT (ABS-SEM-CAT) provides only a catego-
rization for each word. We will come back to a more de-
tailed analysis of the functionality in section 5 after we have
described the overall network performance.

The architecture of SCREEN is parallel interleaved and
incremental. After a word hypothesis has entered the sys-
tem, all basic categorization modules for this word hypoth-
esis will run in parallel. At the same time, the abstract cat-
egorization modules of the previous word hypothesis of the
same sequence run in parallel, since these abstract catego-
rization modules need the output of the basic categorization
first. Furthermore, error detection and correction is done
in the same parallel interleaved manner as early as possible
based on basic and abstract categorization.

3 Learning in Plausibility Networks

In this section we summarize briefly the learning rule in
recurrent plausibility networks [14]. Recurrent plausibility
networks provide a general framework where feedforward
networks and simple recurrent networks are special cases of
more general recurrent plausibility networks.

Let Li(t) denote the set of indices of theith layer at
time t with i 2 f0; � � � ; ng; L0(t) = Inputlayer(t), and
Ln(t) = Outputlayer(t). Then, the input to a unitj is
given as:

netj(t) =
X
z

X
i

wijyi(t � z) (1)

for z 2 f0; � � � ; txg, tx is the maximum time step of con-
text layers CL forLx, unit j 2 Lx andx > 0. Further-
more,wij is the weight from uniti to unit j, yi(t) is the
current computed output value of uniti at timet. Finally
let dpj denote the desired output value of a unit at the out-
put layer,�k(t) the computed error at hidden units, function
f is a semilinear function, that is, the functionf is non-
decreasing and differentiable. Then, the update rule for a
general recurrent plausibility network can be specified as:

�wij(t) �

8>>>>><
>>>>>:

(dj(t) � yj(t)) f 0j(netj(t)) yi(t)
if i 2 Ln�1(t); j 2 Ln(t)

(
P
k

�k(t) wjk) f
0

j(netj(t)) y
�

i (t)

otherwise

(2)



y�i (t) =

8
>>><
>>>:

yi(t) if i 2 Lx�1(t)
yi(t � 1) if i 2 CLx�1(t� 1)

...
...

yi(t� tx) if i 2 CLx�1(t� tx)

(3)

This learning rule for plausibilitynetworks applies to hid-
den layers that can have an arbitrary but fixed number of
distributed recurrent connections. This way, the internal dy-
namic states of a plausibility network over time can be used
to introduce incremental context and sequentiality in a gen-
eral manner. In general, this learning rule provides a com-
mon framework for feedforward networks, simple recurrent
networks and generalized plausibility networks with an ar-
bitrary number of hidden and context layers. In this paper,
especially later in section 5 we focus on the special case of
simple recurrent networks.

4 Portability experiments: Learning
flat representations in two different
domains

In this section we describe the training and generalization
results for two domains. Our first domain was the RTC cor-
pus which contained 175 sentences from the domain of in-
teractions at a railway station counter. The words of these
sentences were labeled with their basic syntactic, abstract
syntactic, basic semantic, and abstract semantic categories
as well as with the phrase starts. For this domain we used
the categories as they were described in tables 1, 2, 3, and
4. Then five simple recurrent networks were trained for the
five subtasks using supervised learning [9]. The total num-
ber of words for the 175 sentences was 3683. Our initial
training set contained 1/3, the test set 2/3 of the sentences.
Table 5 shows the results of the different modules. As we
can see, some modules, especially the syntactic modules
like BAS-SYN-DIS with 99% and 93% and ABS-SYN-
CAT with 91% and 85% perform quite well. A word cat-
egorization is counted as correct, if the generated network
category agrees with the desired category.

After we had reached this level of performance on the
RTC corpus we wanted to test our concepts of flat represen-
tations, learning, and fault tolerance for a different domain
in order to evaluate the portability of the concepts and its
implementation in the SCREEN architecture. Therefore we
chose the BMC corpus which contains 184 sentences from
the domain of meeting arrangements between business part-
ners. We used 1/3 of these sentences for training and 2/3 for
testing. The total number of words for the 184 sentences
was 2355.

An important question was how much of the underly-
ing category representations we had to change for the new
corpus, in order to test portability and generality of the

SCREEN concepts and architecture. Since the syntactic
categories (but not the constructions) are relatively domain-
independent, the same basic and abstract syntactic represen-
tation could be used for the BMC corpus as for the RTC cor-
pus. However, for the semantic categories we had to make
several changes, due to the different domains. While the
railway domain RTC contained the events “need”, “state”,
the meeting domain BMC required the events “suggest”,
“meet”, “select”, “is”, “have”. The only other necessary
changes were the addition of a category “yes” for positive
answers in addition to the existing “no” for negative an-
swers and the removal of the “how” category in the BMC
corpus. The other categories for objects, time and locations
could be used as before. Therefore we had 20 rather than
17 basic semantic categories. For the abstract semantic cat-
egories we added two categories in the BMC corpus, “con-
firm” and “negation”, in order to reflect the many positive
or negative reactions in the BMC corpus. Therefore, we had
17 rather than 15 abstract semantic categories. Of course,
as usual with semantic representations, it might be argued
that a slightly different set could have been used. How-
ever, given that it is rather difficult to argue about “the very
best set” of semantic categories it is more important that we
could use the same concepts of flat category representations
for a different corpus without major changes.

RTC Corpus BMC Corpus
Module correct assignments

training testing training testing

BAS-SYN-DIS 99% 93% 97% 89%
BAS-SEM-DIS 96% 84% 96% 86%
ABS-SYN-CAT 91% 85% 91% 84%
ABS-SEM-CAT 81% 77% 87% 83%
PHRASE-START 93% 89% 95% 90%

Table 5: Performance on the RTC and BMC Corpus

The two left columns of table 5 show the results of train-
ing and testing our five network architectures with the cat-
egories from the BMC corpus. In general, the results are
comparable for the two corpora, although the individual
network performance is slightly different. The two cor-
pora are related in that they both contain spontaneous rather
than written language and they contain interactions rather
than monologs. On the other hand, interactions at a railway
counter differ substantially in vocabulary, syntactic and se-
mantic constructions. Furthermore, the BMC corpus con-
tains less repairs, but the syntactic and semantic construc-
tions are more complex due to more polite interactions in
business contacts.

We consider our results as very promising since we have
used spontaneous “noisy” language from dialogs rather than
written language from texts. Furthermore, we use four flat
learned representations, including two semantic ones, while
previous learning approaches primarily focused on syntac-



tic processing of texts. Based on these results we believe
that learning a flat representation has the potential to in-
crease portability in systems for spontaneous language anal-
ysis.

5 An example for running SCREEN

In this section, we demonstrate the incremental process-
ing of the SCREEN system and focus in particular on the
categorization part. The results of the incremental parse of
a sentence are illustrated by snapshots of the running sys-
tem at different times. In general, the system can process a
large number of parallel sentence hypotheses produced by
the speech recognizer. However, here we concentrate only
on the single optimal sentence hypothesis for a short sen-
tence. As an example we choose the sentence:

Yes I need eh a a sleeping-car <PAUSE>
from <PAUSE> Regensburg to Hamburg.

The system snapshots show the state of the categoriza-
tion part of SCREEN after a particular word hypothesis.
The first snapshot in figure 2 shows the state after the fourth
word hypothesis. However, in general, there could be mul-
tiple parallel sentence hypotheses of different length which
we could view by scrolling up/down and right/left in the cat-
egorization window of sentence hypotheses. This catego-
rization window of SCREEN shows the activation of the ba-
sic syntactic, the abstract syntactic, the basic semantic, and
the abstract semantic category of a word hypothesis using a
scaled square each as well as the phrase start using a scaled
rectangle. The abbreviations below the squares correspond
to the category abbreviations in tables 1 to 4. For instance,
in the first snapshot we can see that the most favorite inter-
pretation for the word hypothesis “I” is that it starts a new
phrase, that the favorite basic syntactic category is a pro-
noun (U), the abstract syntactic category is a noun group
(NG), that the basic semantic category is animate (ANIM)
and the abstract semantic category is AGENT.

The size of the squares corresponds to the activation of
the network category with the highest activation, but one
can also inspect the activation of competitive categories by
clicking on the activation values. For the favorite pronoun
category (U) for the word “I” this second window is shown
below the categorization window. Here we have an option
to see the competitors of the favorite network activation at
a more detailed level and we see that the second highest
activation after the pronoun category was the noun category
(N), which is quite reasonable at the start of the sentence hy-
pothesis. The artificial neural network for BAS-SYN-DIS
with the activations at this time is shown in figure 3. Each
unit of the input layer represents a basic syntactic category
as retrieved from the lexicon. This activation as well as the
context is propagated through the hidden layer and finally to
the output layer. The output layer possesses the same num-
ber of units as the input but the output units represent the
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Figure 3: Recurrent network for basic syntactic categorization

disambiguated categories. The label of the output unit with
the highest activation is taken as disambiguation result.

Furthermore, at the end of the sentence part in figure 2
we can see the interjection “eh” but without any favorite ac-
tivation value. At this point only the word hypothesis has
reached SCREEN, while the basic categories for the previ-
ous word “need” have already been computed, as well as
the abstract categories for the second previous word “I”.
This illustrates the parallel interleaved and incremental pro-
cessing in SCREEN. Interjections like “eh” belong to the
hesitation phenomena which will be deleted for providing a
better overall interpretation of a sentence. Therefore, in the
second snapshot of figure 2 we see that the initially occur-
ring interjection has been detected and eliminated from the
original sentence hypothesis.

Furthermore, a possible repetition of constituents like
word repairs can be dealt with. As an example, we illus-
trate the repetition of the determiner “a” in “yes I need a
a”. In general, the correction part in SCREEN can elimi-
nate repairs based on the combined graded equality of the
words themselves as well as their basic syntactic and ba-
sic semantic categories [11]. In this case, the words and
the categories of the two words “a” correspond so that this
repetition can be eliminated later. As another example for
the more detailed inspection of categories in figure 2, we
show the competitive activations for the hypothesis for the
noun group (NG) for the first “a”. The second snapshot
shows that NG is clearly preferred compared to the other
abstract syntactic categories of “a”. Figure 4 gives a more
detailed view of the ABS-SYN-CAT module for this situa-
tion. Each unit of the input layer represents a basic syntactic
category. This input and the context are propagated to the
hidden layer. The units of the hidden layer are copied to
the context and propagated to the output layer. In the output
layer each unit represents an abstract syntactic category and
the one with the highest activation is selected.

The third snapshot of figure 2 shows that the word repeti-
tion with “a” has been eliminated. SCREEN also started to
work on the word hypothesis for “sleeping-car” which has
been clearly identified as a noun (N) as the basic syntac-



Figure 2: System snapshots of the category part. The abbreviations of the categories are explained in table 1 to 4.

tic category but which also has a very weak preference for
a destination (DEST). Our inspection reveals that also all
other competitive semantic categories have very low values
close to 0. So the network has only very low preferences
in this case, since it has not seen enough training instances
of PHYSICAL objects (sleeping car) after NEED events.
Therefore, the underlying network for basic semantic cate-
gorization could not learn a clear preference for “sleeping-
car” as being PHYSICAL.

Our final system snapshot of figure 2 shows the end of the
sentence. The previously appearing pause has been elimi-

nated. Also the necessity of the phrase start can be clearly
demonstrated here. Since we parse incrementally we asso-
ciate each word with an abstract category. We take the first
abstract syntactic category of a phrase group as the final
abstract syntactic interpretation indicated by the filled rect-
angle phrase start marker since the first word like a prepo-
sition is a very good detector for an abstract syntactic cate-
gory (based on the results in [15]). On the other hand, we
take the last abstract semantic category of a phrase group
since the last word like a head noun is a very good de-
tector for an abstract semantic category (based on the re-
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sults in [13, 16]). Phrase starts are also needed for distin-
guishing the same subsequent phrases. Already at the word
“from” the abstract syntactic hypothesis favors the preposi-
tional group PG. This favorite preference is kept for the sub-
sequent words “Regensburg to Hamburg”. If there would
be no phrase start marker before “to Hamburg” this phrase
could not be detected as a separate prepositional group.

Furthermore, we can see that “Regensburg” has been de-
tected as a noun in a prepositional group, and is a location
from which to start. In contrary, “Hamburg” in a differ-
ent context, has been detected as a noun in a prepositional
group, and is a location to which to travel. For the abstract
semantic category (LC-TO) we also show the other com-
petitors of the network (shown in figure 2) and we can see
that - besides the favorite LC-TO - the second best pref-
erence would be LC-FRM, a second choice which is quite
reasonable and understandable for city names. Only by the
preceding context - either “from” or “to” - it is possible
for the underlying network to make a decision whether the
city name is a source or destination. Therefore, this exam-
ple also illustrates the necessity of using recurrent networks
with a memory for learning the preceding context.

6 Discussion and Conclusions

We have described the underlying concepts of flat represen-
tation, learning, and fault tolerance for processing sponta-
neous language in the novel system SCREEN. The system
which is probably closest to our work is the PARSEC sys-
tem [3]. PARSEC is a modular connectionist system which
has been designed for the domain of conference registra-
tion. Input to the system is a sentence and the output is
a connectionist case role analysis for the sentence. PAR-
SEC is used in the speech translation system JANUS (e.g.
[10]) as a backup-component if a symbolic parser does not
provide a desired analysis. Rather than having multiple
connectionist and symbolic parsers we integrate symbolic
and connectionist properties in a single system; for instance
connectionist representations support our category learning
while symbolic representations are most useful for simple

correction comparisons and for inter-module communica-
tion.

Currently, about four person years have been invested
into the development of the novel concepts of SCREEN,
the design of the overall architecture, the labeling of the two
corpora, and the implementation of the networks, commu-
nication and interface. The category part, the core part of
the system, has been fully implemented, trained and tested
for the two different described domains. Furthermore, the
modules for the correction part have been implemented and
we also integrated a comprehensive implemented part for
speech sequence construction. Sentences like the example
sentence from figure 2 can be processed close to real time
on a Sparc 2 machine. However, space limitations restrict
us from describing all parts of SCREEN in detail, so that we
focused in particular on the categorization part as the core
part for demonstrating the underlying concepts for multiple
corpora.

We believe that this work suggests a number of new con-
cepts. First, neural network learning is an essential prop-
erty in our system. Learning is not only useful for reducing
knowledge engineering but learning also introduces a data-
driven fault tolerance by using inductive learning on real-
world data. Furthermore, we have a possibility to trans-
port concepts to new domains without manually engineer-
ing syntactic or semantic rule or knowledge bases. Sec-
ond, previous early work in artificial neural networks for
language has often focused on small networks forartifi-
cially generated training examples (e.g., [2, 4, 5, 6]). Our
work is using neural network based architectures onreal-
world spontaneous language. Third, we use preferences
for different syntactic and semantic hypotheses. Besides
a favorite interpretation there are always additional lower-
rated interpretations. Fourth, the use of flat syntactic and
semantic analysis vectors does not generate deep tree repre-
sentations and has advantages for incremental processing of
noisy spontaneous language. Using flat analysis SCREEN
will always produce an interpretation and will not break on
unusual syntactic or semantic constructions. We claim that
the general properties of learning, fault tolerance, and flat
representation have the potential to increase the portabil-
ity of systems for spontaneous language analysis and we
demonstrated this potential in our system SCREEN with
real-world spoken language for two different domains.
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