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Abstract. In this paper we describe a new approach for learning spontaneous language for multiple domains using arti-
ficial neural networks. This approach is based on a novel use of flat syntactic and semantic representations, fault-tolerant
processing of noisy spontaneous language, and learning of individual domain-dependent subtasks. This approach has
been implemented in our parallel and incremental architecture SCREEN (Symbolic Connectionist Robust EnterprisE
for Natural language) which we have based on a careful selection and interaction of symbolic modules and artificial
neural networks. We present the learned syntactic and semantic categorization and we examine the potential for in-
creasing the portability by focusing on multiple corpora and domains. We claim that the general properties of learning,
fault tolerance, and flat representations as implemented in SCREEN have the potential to increase the portability of
neural network-based systems for spontaneous language analysis.

1 Introduction portability. Fault-tolerance is needed for dealing with errors
in spontaneous language like pauses, interjections, repairs,

Recently, the field of artificial neural networks for languaggnd repetitions. Flat representations are needed for support-
processing has seen a new emphasis on working towangsportability and the analysis of syntactically or semanti-
real-world speech/language systems. Early work on negglly anomalous spontaneous language. We will start by
ral networks had successfully focused on carefully desigrigyeloping the basis for a learned robust flat analysis. Af-
artificially generated training material, e.g. for various lan-terwards, we will describe our results for a flat syntactic and
guage tasks [8], case role assignment, [4, 6], sequence peprantic analysis for the domain of interactions at a railway
cessing [2, 7], and rule induction [5]. However, in mostation counter using the RTC corpudhen we will use the
cases neural network techniques have not yet been exaame neural network learning techniques and as much of the
ined under hardeal-world constraints of unrestricted natunderlying system concepts as possible for a new different
ural language. This is the topic of this paper and we shel@main of meeting arrangements using the BMC cotpus
that artificial neural networks have the potential to deal witfypical sentences in the RTC and BMC domains are:
real-world spontaneous language input.

In our previous work we used hybrid connectionist tech- ® Yes | need eh a a sleeping car PAUSE from PAUSE
nigues for learning a flat understanding tekt language Regensburg to Hamburg (RTC corpus)
[13, 14, 15]. After flat learned analysis could be used suc-
cessfully for relatively well-formed text analysis [13] we ¢ Ohyes rightbut| have from nine to four already a date
moved stepwise to the analysis of less well-formed spon- therefore | would perhaps PAUSE suggest Thursday
taneous dialog analysis [12, 17]. In this paper we de- (BMC corpus)
scribe new extensive experiments and results of learning
a screening flat understanding of spontaneous real-wdflcst, we will give an overview of the used syntactic cate-
dialog language in multiple domains and we present tlgories. Since we address the general problem of represent-
learned syntactic and semantic categorization from our siyg spontaneous language we have to take into considera-
tem SCREEN. tion the incremental properties of language processing. In

The general properties which have been incorporated inte _ o o
the SCREEN system are 1) neural network learning, 2) fatlrjelléecl?r:zﬂisrizzmplled at the University of Regensburg (FRG) containing
tolerance, and 3) a screening flat representation. LearniNgcorpus compiled at the University of Karlsruhe (FRG) containing
reduces the amount of knowledge engineering and increasesing arrangements (also called Blaubeuren dialogs).




particular, spontaneous language can contain repairs, repe-

titions, interjections, pauses, new starts and many other he&Ategory | Examples
itation errors. Therefore, building a deep structural interpre NEED need, would like
tation will be much less successful than for text understand'—\s’?‘/AEE Er?é)\;\l/d(:xist
ing and analyzing relatively well-formed sentences. Fur ALX can. could
SAY say, ask
QUESTIon question words: which, when
Category | Examples || Category | Examples PHYSical physical objects: train, wagon
Noun train, track || adlective early, cheap ANl Mate animate objects: I, you
Verb N need, go Advz_arb) _ very, perhaps| ABStract abstract objects: connection, class
pReposition | from, to Conjunction | and, or HERE time or location state words, preps.: on, in
prondn 1, you Determiner | the, a SouRCe time or location source words, preps.: from
nulveral one, two | nterjection | eh, oh DESTination | time or location destination words, preps.: to
Participle taken Cther particles LOCation Frankfurt, Hamburg
pause/) pause TI VE tomorrow, at 3 o' clock
HOW with, without
NEGation no

Table 1: Elements of the basic syntacti ry v r . . .
Sic syntactic category vecto NI LL words “without” specific semantics, e.g. the

Table 3: Elements of the basic semantic category vector

| Category | Examples |
VerbGroup would like to have
NounGroup aticket | Cat§gory | Exgmples |
AdverbialGroup later, as early as possible ACTion _ actl_o_n for fuI_I verb events: go, need _
PrepositionalGroup | to Hamburg, in the morning AUX-action auxiliary actlon_for aux. events: would like
ConjunctionGroup | and, either ... or AGENT agentof an action: |
MbdusGroup interrogatives, confirmations: when GBJect object of an action: a ticket
SpecialGroup additives like politeness: please, then | REC! Pient recipient of an action: to me _
I nterjectionGroup | interjections, pauses: eh, oh I NSTRument instr. for an act.: using a hlg_h-speed train
MANNER how to ach. an act.: with switching trains
TiMe-AT at what time: in the morning
Table 2: Elements of the abstract syntactic category vector | TiMe-FRoM start time: after 6am
TiMe-TO end time: before 8pm
. LoCationAT at which location: in Frankfurt
thermore, we want to start to process language incremeNacation£RoM | start location: from Dortmund
tally without waiting until a complete utterance has been ycationT0 end location: to Hamburg
finished. Because of the hesitation errors and the incremeguesTion question phrases: at what time
tality of language we designed a flat representation of sppma sc miscellaneous words, e.g. for politeness

taneous language at various basic and abstract levels. Ta-
ble 1 shows the basic syntactic categories as they have been _
used for the RTC corpus; table 2 shows the abstract SyntaC_Table 4: Elements of the abstract semantic category vector
tic categories. Rather than having arbitrary deep syntactic

representations we have a flat basic and an abstract syrgec- Qyerview of SCREEN
tic representation consisting of category vectors with 13 re-

spectively? categories for the representation of the syntag; far, we have described the flat syntactic and seman-
tic categories of a word. tic representations at the basic and abstract levels. We
Similar to the syntactic representations we represent gl now show how these flat representations are integrated
flat semantic meaning by using basic and abstract semajtiour system SCREEN. SCREEN stands fymbolic
categories. Table 3 shows the basic semantic categoriesaectionist Robust Enterprisk for Natural language and
they have been used for the RTC corpus; table 4 shows @le@ls with fault-tolerant learning of spontaneous natural
abstract semantic categories. language. Figure 1 gives an overview of the six parts in
In summary, we have developed a new flat category r&fSREEN as well as a more detailed description of five es-
resentation for processing spontaneous language. Siseatial modules in the category part.
spontaneous language contains many hesitation errors, utA general, the six parts in SCREEN are the speech se-
grammatical constructions, restarts etc., a flat represeni@ence construction part, the speech evaluation part, the
tion at different interpretation levels supports the learnir@ategory part, the correction part, the case frame part and
of a robust fault-tolerant processing. the subclause part. The speech sequence construction part



is responsible for receiving the word hypotheses fromsgntactic (semantic) categories shown in table 2 (4). The
speech recognizer and for building sentence hypothesexiules for abstract categorization receive a representation
based on these word hypotheses. The speech evaluatiomfartdisambiguated word in a particular sequence and pro-
provides an evaluation of the syntactic and semantic plaugée an abstract syntactic and semantic category represen-
bility of a sequence. The category part is the part for leatation. For instance, in a simple sentence like “we meet in
ing flat syntactic and semantic category representations gre&lmorning”, “we” would be a noun group, “meet” a verb
our major focus here for examining portability for differgroup, and “in the morning” a prepositional group. Finally,
ent domains. The correction part is responsible for deteitte module PHRASE-START receives the disambiguated
ing pauses, interjections, word errors, and phrase errorb@sic category representation of a word and supplies hy-
the form of repetitions and repairs as well as for elimingtotheses about the phrase boundaries of a sentence since
ing them from the current parse and the final interpretatidkBS-SYN-CAT (ABS-SEM-CAT) provides only a catego-
The subclause part and the case frame part are responsitdéion for each word. We will come back to a more de-
for distinguishing multiple case frames for sentences withiled analysis of the functionality in section 5 after we have
several subclauses. described the overall network performance.
The architecture of SCREEN is parallel interleaved and
incremental. After a word hypothesis has entered the sys-
/ﬂ\Syntax/SemantiCS-Hypotheses tem, all basic categorization modules for this word hypoth-

case frame part | subclause part esis _W|II'run in parallel. At the same time, the abstract cat-
A egorization modules of the previous word hypothesis of the
correction paq‘& S— ? VVVVVVVVVVVVVVVVVVVVVVVVVV ? same sequence run in parallel, since these abstract catego-
— rization modules n h i izati
[PrrASE.START| | [ABS.SYN.CAT | || [ ABS-SEMCAT] . ation modules need the outqu of the basic ca_tegquzatlon
Jpp— — pp— first. Furthermore, error detection and correction is done
2- 8- 15 17- . . .
in the same parallel interleaved manner as early as possible
CEX0=(@09 || @QO=(E@x9 | ©EQO=E09) based on basic and abstract categorization.
- 13(@00) 13(@00) 17/20(C300)
&
o . . . g
5 [ BAs-sYN-DIS | | [ BAS-SEM-DIS ] 3 Learnlng in Plaus bl|lty Networks
5
=
< = =z . . . . . .
E &5 G55 55— 5D In this section we summarize briefly the learning r_ulle' in
g N _ N : recurrent plausibility networks [14]. Recurrent plausibility
& | category paf(oooo)e“-ex'w“‘ 7120@90)~{Lexicor) networks provide a general framework where feedforward
v - _ networks and simple recurrent networks are special cases of
speech sequence construction part more general recurrent plausibility networks.

/ﬂ\wOrd-Hypomeses Let L;(t) denote the set of indices of theh layer at
timet with¢ € {0,---,n}, Lo(¢t) = Inputlayer(t), and
L,(t) = Outputlayer(t). Then, the input to a unit is
Figure 1: Overview of SCREEN with a focus on the category pdgitven as:

All modules in SCREEN - like the five shown in figure 1 net;(t) = Z Z wijyi(t — z) 1)
- communicate via symbolic messages and can contain ei- '
ther symbolic representations or trained connectionist netfor z € {0, - - -, ¢, }, ¢, is the maximum time step of con-
works. The module BAS-SYN-DIS (BAS-SEM-DIS) retext layers CL forl,, unitj € L, andz > 0. Further-
ceives a word as part of a sequence, looks up its basic syere, w;; is the weight from unit to unit j, y;(¢) is the
tactic (semantic) category representation, and provides adarent computed output value of uniat time¢. Finally
sic syntactic (semantic) disambiguation using the precediryd,; denote the desired output value of a unit at the out-
context. For instance, for the word “train” the lexicon caput layer,d; () the computed error at hidden units, function
contain the basic syntactic categories “verb” and “noury’.is a semilinear function, that is, the functighis non-
However, in a particular sequence like “I need a train” thikecreasing and differentiable. Then, the update rule for a
syntactic category has to be “noun” depending on the pregéneral recurrent plausibility network can be specified as:
ous context. For representing the preceding context we use
simple recurrent networks [2]. BAS-SYN-DIS (BAS-SEM-
DIS) performs this basic syntactic disambiguation and pro-

(d;(t) —y;(t) f;(net;(t)
)J

vides input for the module ABS-SYN-CAT (ABS-SEM- i3 € Ln1(t),] € La(?)
CAT). Awij(t) = 5 N e ()
ABS-SYN-CAT (ABS-SEM-CAT) is responsible for the @ k() wir) fi(net;(8)) v (1)

abstract syntactic categorization, according to the abstract otherwise



SCREEN concepts and architecture. Since the syntactic
L categories (but not the constructions) are relatively domain-
yi(t) !f L € Ly-1(1) independent, the same basic and abstract syntactic represen-
yi(t) = vi(t —1) ifi € CLy1(t—1) 3) tation could be used for the BMC corpus as for the RTC cor-
! : : pus. However, for the semantic categories we had to make
yi(t —ts) if i€ CLy_1(t—1t,) several changes, due to the different domains. While the
railway domain RTC contained the events “need”, “state”,
This learning rule for plausibility networks applies to hidthe meeting domain BMC required the events “suggest”,
den layers that can have an arbitrary but fixed number“ofeet”, “select”, “is”, “have”. The only other necessary
distributed recurrent connections. This way, the internal dshanges were the addition of a category “yes” for positive
namic states of a plausibility network over time can be usadswers in addition to the existing “no” for negative an-
to introduce incremental context and sequentiality in a geswers and the removal of the “how” category in the BMC
eral manner. In general, this learning rule provides a conorpus. The other categories for objects, time and locations
mon framework for feedforward networks, simple recurreaould be used as before. Therefore we had 20 rather than
networks and generalized plausibility networks with an at7 basic semantic categories. For the abstract semantic cat-
bitrary number of hidden and context layers. In this papegories we added two categories in the BMC corpus, “con-
especially later in section 5 we focus on the special casdioh” and “negation”, in order to reflect the many positive
simple recurrent networks. or negative reactions in the BMC corpus. Therefore, we had
17 rather than 15 abstract semantic categories. Of course,
. . . as usual with semantic representations, it might be argued
4 Portability experiments. Learning that a slightly different set could have been used. How-
flat representati onsin two different &ven given that it is rather difficult to argue about “the very
. best set” of semantic categories it is more important that we
domains could use the same concepts of flat category representations
for a different corpus without major changes.
In this section we describe the training and generalization
results for two domains. Our first domain was the RTC cor-

pus which contained 175 sentences from the domain of |n- RTC Corpus || BMC Corpus
teractions at a railway station counter. The words of thes&lodule _ correctassignments
sentences were labeled with their basic syntactic, abstract training | testing || training | testing
syntactic, basic semantic, and abstract semantic categqriB4S-SYN-DIS 99% | 93% 97% | 89%
as well as with the phrase starts. For this domain we ugeBAS-SEM-DIS 96% | 84% | 96% | 86%

the categories as they were described in tables 1, 2, 3, aﬁtgggéu%i‘; gizz 3?22 2%22 2‘3122
4. Then five S|mple recurrgnt networlfs were trained for tm HRASE-START!  93% 89% 95% 90%
five subtasks using supervised learning [9]. The total num
ber of words for the 175 sentences was 3683. Our initial
training set contained 1/3, the test set 2/3 of the sentences. Table 5: Performance on the RTC and BMC Corpus
Table 5 shows the results of the different modules. As we
can see, some modules, especially the syntactic moduleghe two left columns of table 5 show the results of train-
like BAS-SYN-DIS with 99% and 93% and ABS-SYN-ing and testing our five network architectures with the cat-
CAT with 91% and 85% perform quite well. A word cat-egories from the BMC corpus. In general, the results are
egorization is counted as correct, if the generated netwodmparable for the two corpora, although the individual
category agrees with the desired category. network performance is slightly different. The two cor-
After we had reached this level of performance on tipera are related in that they both contain spontaneous rather
RTC corpus we wanted to test our concepts of flat represtian written language and they contain interactions rather
tations, learning, and fault tolerance for a different domaihan monologs. On the other hand, interactions at a railway
in order to evaluate the portability of the concepts and iteunter differ substantially in vocabulary, syntactic and se-
implementation in the SCREEN architecture. Therefore weantic constructions. Furthermore, the BMC corpus con-
chose the BMC corpus which contains 184 sentences frtaims less repairs, but the syntactic and semantic construc-
the domain of meeting arrangements between business piamtis are more complex due to more polite interactions in
ners. We used 1/3 of these sentences for training and 2/3fesiness contacts.
testing. The total number of words for the 184 sentences\Ne consider our results as very promising since we have
was 2355. used spontaneous “noisy” language from dialogs rather than
An important question was how much of the underlywritten language from texts. Furthermore, we use four flat
ing category representations we had to change for the dearned representations, including two semantic ones, while
corpus, in order to test portability and generality of thgrevious learning approaches primarily focused on syntac-




tic processing of texts. Based on these results we believe

that learning a flat representation has the potential to futput
crease portability in systems for spontaneous language O ‘
ysis. N J

5 An examplefor running SCREEN

In this section, we demonstrate the incremental proce
ing of the SCREEN system and focus in particular onthe 5 v
categorization part. The results of the incremental parsea@biguous representation of "I" in BAS-SYN-DIS
a sentence are illustrated by snapshots of the running sys-
tem at different times. In general, the system can process a ) _ o
large number of parallel sentence hypotheses produced Eigure 3: Recurrent network for basic syntactic categorization
the speech recognizer. However, here we concentrate only
on the single optimal sentence hypothesis for a short sen-
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[

tence. As an example we choose the sentence: disambiguated. cat.ego_ries. The Iat_;el of the ogtput unit with
the highest activation is taken as disambiguation result.
Yes | need eh a a sleeping-car <PAUSE> Furthermore, at the end of the sentence part in figure 2

from <PAUSE> Regensburg to Hanburg. we can see the interjection “eh” but without any favorite ac-

The system snapshots show the state of the categori/@tion value. At this point only the word hypothesis has
tion part of SCREEN after a particular word hypothesiE‘?aChed SCREEN, while the basic categories for the previ-

The first snapshot in figure 2 shows the state after the fouls Word “need” have already been computed, as well as

word hypothesis. However, in general, there could be mm_e abstract categories for the second previous word “I”.

tiple parallel sentence hypotheses of different length whidfiS illustrates the parallel interleaved and incremental pro-
we could view by scrolling up/down and right/leftin the catc€SSing in SCREEN. Interjections like “eh” belong to the

egorization window of sentence hypotheses. This Categg_sitation phenomena which will be deleted for providing a

rization window of SCREEN shows the activation of the b&€tter overall interpretation of a sentence. Therefore, in the
sic syntactic, the abstract syntactic, the basic semantic, §fgP"d snapshot of figure 2 we see that the initially occur-
the abstract semantic category of a word hypothesis usir@jg_mterjectlon has been d.etected and eliminated from the
scaled square each as well as the phrase start using a se4igial sentence hypothesis.
rectangle. The abbreviations below the squares corresporfgurthermore, a possible repetition of constituents like
to the category abbreviations in tables 1 to 4. For instan¥rd repairs can be dealt with. As an example, we illus-
in the first snapshot we can see that the most favorite inféate the repetition of the determiner “a” in “yes | need a
pretation for the word hypothesis “I” is that it starts a ne@’- In general, the correction part in SCREEN can elimi-
phrase, that the favorite basic syntactic category is a pgte repairs based on the combined graded equality of the
noun (U), the abstract syntactic category is a noun groiprds themselves as well as their basic syntactic and ba-
(NG), that the basic semantic category is animate (ANINIc semantic categories [11]. In this case, the words and
and the abstract semantic category is AGENT. the categories of the two words “a” correspond so that this
The size of the squares Corresponds to the activatiorfeﬂetition can be eliminated later. As another example for
the network category with the highest activation, but orlee more detailed inspection of categories in figure 2, we
can also inspect the activation of competitive categories $jow the competitive activations for the hypothesis for the
clicking on the activation values. For the favorite pronoutPun group (NG) for the first “a”. The second snapshot
category (U) for the word “I" this second window is showghows that NG is clearly preferred compared to the other
below the categorization window. Here we have an optigRstract syntactic categories of “a”. Figure 4 gives a more
to see the competitors of the favorite network activation @gtailed view of the ABS-SYN-CAT module for this situa-
a more detailed level and we see that the second higli@&: Each unitof the inputlayer represents a basic syntactic
activation after the pronoun category was the noun categéafegory. This input and the context are propagated to the
(N), which is quite reasonable at the start of the sentence Riglden layer. The units of the hidden layer are copied to
pothesis. The artificial neural network for BAS-SYN-DIghe context and propagated to the output layer. In the output
with the activations at this time is shown in figure 3. EadRyer each unitrepresents an abstract syntactic category and
unit of the input layer represents a basic syntactic categdt¢ one with the highest activation is selected.
as retrieved from the lexicon. This activation as well as theThe third snapshot of figure 2 shows that the word repeti-
contextis propagated through the hidden layer and finallytton with “a” has been eliminated. SCREEN also started to
the output layer. The output layer possesses the same mwork on the word hypothesis for “sleeping-car” which has
ber of units as the input but the output units represent theen clearly identified as a noun (N) as the basic syntac-



[#] SCREEN - Sumbolic Conmectionist Robust EnterprisE for Matural language

& on line
w single step

1 Sentencehypotheses. Time: 3 (Systenn) /3 (Display).

mm |Om =
A MG U NG v ML

TER TEE o
oL

YES

BISC AMIM  AGENT MEED ML ML ML
I NEED EH

kel

[<al<l 0 []=>
n . . n . .
38 I v A R s} o L M I P o !

1 Sentencehypotheses. Time: 7 (Systenn) / 7 (Display).

i
S (H . HE H B Il H
A Jiite] 1] I35 ki Vi3 5 M3 I ML HIL ML
TERI TR T BRI TEN oo
NILL  hISC ANDM  AGENT MEED  ACT ML  MISC MLL ML ML ML
YES I NEED A A SLEEPING-CAR
%
ki
<<l 0 R
H -
e ve @ ca A3 Ma 536
1 Sentencehypotheses. Time: 10 (System) / 10 (Display).
i
S (H . HE H B HE |
A Jiite] 1] I35 ki Vi3 5 M3 N ML HIL ML
TERI TR T EEl T oo
NILL  hISC ANDM  AGENT MEED  ACT ML  MISC DEST ML ML ML
YES I NEED A SLEEFING-CAR PAUSE
=
<<l 0 R
. - . . . - . ] ]
MEED MOVE STATE AUX  SAY (UEST PHYS AMM ABS HERE GSRC  DEST LOC TIME HOW MBS  MIL
1 Sentencehypotheses. Time: 20 (System) /20 (Display).
i
= (Wl HE H B HE HE
v V3 D 3= H 43 R j3 3l P I3 j i3 i3]
TERI TERE TRl T BNl T BN 1T Bl S
MEED  ACT MLL  MISC DEST LC-TO DEST L-T0 LO2 L2-TO DEST LI-TO LOC Lo-TO
NEED A SLEEPING-CAR FROM REGENSBURG TO HAMBURG

ACT AT AGENT COBI RECIF DNSTR MAMMER TM-AT TM-FRM TM-TO LO-AT LC-FRM LO-TO QUEST  MISC

Figure 2: System snapshots of the category part. The abbreviations of the categories are explained in table 1 to 4.

tic category but which also has a very weak preference fated. Also the necessity of the phrase start can be clearly
a destination (DEST). Our inspection reveals that also démonstrated here. Since we parse incrementally we asso-
other competitive semantic categories have very low valugate each word with an abstract category. We take the first
close to 0. So the network has only very low preferencabstract syntactic category of a phrase group as the final
in this case, since it has not seen enough training instanalstract syntactic interpretation indicated by the filled rect-
of PHYSICAL objects (sleeping car) after NEED eventangle phrase start marker since the first word like a prepo-
Therefore, the underlying network for basic semantic catation is a very good detector for an abstract syntactic cate-
gorization could not learn a clear preference for “sleepingery (based on the results in [15]). On the other hand, we
car” as being PHYSICAL. take the last abstract semantic category of a phrase group

since the last word like a head noun is a very good de-

Our final system snapshot of figure 2 shows the end of {g@tor for an abstract semantic category (based on the re-
sentence. The previously appearing pause has been elimi-



correction comparisons and for inter-module communica-
tion.

Currently, about four person years have been invested
into the development of the novel concepts of SCREEN,
the design of the overall architecture, the labeling of the two
corpora, and the implementation of the networks, commu-
nication and interface. The category part, the core part of
the system, has been fully implemented, trained and tested
for the two different described domains. Furthermore, the
modules for the correction part have been implemented and
we also integrated a comprehensive implemented part for
speech sequence construction. Sentences like the example
Figure 4: Recurrent network for abstract syntactic categorizati&ﬁntence from flgur_e 2 can be processed.clpse: to real tl_me

on a Sparc 2 machine. However, space limitations restrict

us from describing all parts of SCREEN in detail, so that we
sults in [13, 16]). Phrase starts are also needed for disfcused in particular on the categorization part as the core
guishing the same subsequent phrases. Already at the wsid for demonstrating the underlying concepts for multiple
“from” the abstract syntactic hypothesis favors the preposirpora.
tional group PG. This favorite preference is kept for the sub-We believe that this work suggests a number of new con-
sequent words “Regensburg to Hamburg”. If there woubgpts. First, neural network learning is an essential prop-
be no phrase start marker before “to Hamburg” this phraagy in our system. Learning is not only useful for reducing
could not be detected as a separate prepositional group knowledge engineering but learning also introduces a data-

Furthermore, we can see that “Regensburg” has beendiien fault tolerance by using inductive learning on real-
tected as a noun in a prepositional group, and is a locatiwarld data. Furthermore, we have a possibility to trans-
from which to start. In contrary, “Hamburg” in a differ-port concepts to new domains without manually engineer-
ent context, has been detected as a noun in a prepositigrgisyntactic or semantic rule or knowledge bases. Sec-
group, and is a location to which to travel. For the abstrawtd, previous early work in artificial neural networks for
semantic category (LC-TO) we also show the other cofanguage has often focused on small networksaiifi-
petitors of the network (shown in figure 2) and we can seelly generated training examples (e.g., [2, 4, 5, 6]). Our
that - besides the favorite LC-TO - the second best prgfork is using neural network based architectureges-
erence would be LC-FRM, a second choice which is quiterld spontaneous language. Third, we use preferences
reasonable and understandable for city names. Only byfiredifferent syntactic and semantic hypotheses. Besides
preceding context - either “from” or “to” - it is possiblea favorite interpretation there are always additional lower-
for the underlying network to make a decision whether tmated interpretations. Fourth, the use of flat syntactic and
city name is a source or destination. Therefore, this exasemantic analysis vectors does not generate deep tree repre-
ple also illustrates the necessity of using recurrent netwosentations and has advantages for incremental processing of
with a memory for learning the preceding context. noisy spontaneous language. Using flat analysis SCREEN

will always produce an interpretation and will not break on
. . . unusual syntactic or semantic constructions. We claim that
6 Discussion and Conclusions the general properties of learning, fault tolerance, and flat
representation have the potential to increase the portabil-
We have described the underlying concepts of flat represgpof systems for spontaneous language analysis and we
tation, learning, and fault tolerance for processing spontiemonstrated this potential in our system SCREEN with
neous language in the novel system SCREEN. The syste@l-world spoken language for two different domains.
which is probably closest to our work is the PARSEC sys-
tem [3]. PARSEC is a modular connectionist system Whimknowledgments
has been designed for the domain of conference registra-
tion. Input to the system is a sentence and the outpuilidis research was funded by the German Federal Min-
a connectionist case role analysis for the sentence. PAgRy for Research and Technology (BMBF) under Grant
SEC is used in the speech translation system JANUS (#@1/V101A0 and by the German Research Community
[10]) as a backup-component if a symbolic parser does f8FG) under contract DFG Ha 1026/6-2. We would like
provide a desired analysis. Rather than having multigie thank S. Haack, M. &chel, M. Meurer, U. Sauerland,
connectionist and symbolic parsers we integrate symbdiied M. Schrattenholzer for their work on SCREEN.
and connectionist properties in a single system; for instance
connectionist representations support our category learning
while symbolic representations are most useful for simple

Disambiguated representation of "a" in ABS-SYN-CAT
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