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Abstract

We present a mechanism of unsupervised competitive learning and devel-
opment of topology preserving self-organizing maps of spiking neurons. The
information encoding is based on the precise timing of single spike events. The
work provides a competitive learning algorithm that is based on the relative tim-
ing of the pre- and post-synaptic spikes, local synapse competitions within a
single neuron and global competition via lateral connections. Furthermore, we
present part of the experimental work on the capability of the suggested mech-
anism to perform topology preserving mapping and competitive learning. The
results show that our model covers the main characteristic behaviour of the
standard SOM but uses a computationally more powerful timing-dependent
spike encoding.

1 Introduction

There is an ongoing debate and research on which are the essential properties of
the biological neurons that need to be simulated in order to reach the computational
power of a real neural system [Maass, 1997b]. As a result of some recent studies,
there is a broad agreement that the brain uses simultaneously both mean firing
rate as well as spike-timing encoding schemes in order to represent information
and transfer signals [Gerstner and van Hemmen, 1994, Sejnowski, 1995]. Artificial
neural networks of spiking neurons which employ the mechanism of precise spike
timing for encoding information have been shown to be computationally more pow-
erful than the classical connectionist models [Maass, 1997b]. Furthermore, there
are several temporal encoding schemes that the real neurons are believed to be



using. Neural formations such as cell assemblies rely mainly on the synchroniza-
tion and coincidence of the spikes, whereas encoding schemes such as phase and
time-to-first spike codes encode signals in the time shift between the spikes or with
a reference to a global oscillation. In this paper we present a model of an artificial
neural network of spiking neurons that uses the time shift of the incoming spikes
with a reference to a global signal as a mechanism of encoding information.

Topology preserving maps have been found in many areas in the brain
[Arbib, 1995] and are believed to emerge as a result of a competitive learn-
ing mechanism [Miller, 1996, Sirosh and Miikkulainen, 1996]. The Self-Organizing
Map (SOM) architecture has provided a good explanation and computational mod-
els of the mechanism of developing such topological maps [Kohonen, 1993]. There
has been a fair amount of realizations of the basic idea of self-organization in artifi-
cial neural networks, most of which are based on the connectionist sigmoidal gates.
Such models, however, could not exploit the computational advantages provided
by the neurons using temporal codes.

2 Neuron model, Pulsed Neural Network and Infor-
mation encoding

We used a leaky integrate-and-fire neuron described in [Maass, 1999] with post-
synaptic and soma potentials modeled with differential equations. In the different
experiments, we varied the time constants of the synapse and the soma so that
the neuron reaches the peak of its membrane potential at time t̂ between 5 and 20
milliseconds. The neuron also fires exactly at time t̂ if the total synaptic strength of
simultaneous spikes equals 1.

The network consists of a layer of m+1 input neurons u0,u1, . . . ,um, and a layer
of n competitive neurons v1, . . . ,vn (Figure 1). A competitive neuron v receives exci-
tatory signals from the input neurons via feed-forward connections with normalized
weights w0,w1, . . . ,w1. The competitive neurons are connected to each other via
lateral connections which are initially excitatory for neighboring neurons and in-
hibitory for neurons on large distances in the neighborhood matrix.

The input information is encoded in the latency of the spikes at u1, . . . ,um with
respect to a reference to a “global” signal at time t0. In our model, the reference
signal is given by a single spike of u0 at t0. In order to represent an input vector
(x1, . . . ,xm), each ui fires exactly once within the encoding time interval T after t0
representing a value xi = ti−t0

T .
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Figure 1: The neural network architecture.

3 Hebbian Spike-Timing Dependent Self-
Organization

The paradigm of correlation-based (Hebbian) learning provides the ground for the
current views on the development of neural circuits on the basis of correlated activ-
ity. Such learning is known to run on two critical mechanisms: activity-dependent
synaptic modification as suggested by Hebb [Hebb, 1949] and local synaptic com-
petition and strength redistribution [Miller, 1996]. Both mechanisms are equally
important and found to be active in the self-organization and competitive adapta-
tion of real neural systems. In addition, a self-organization of neurons needs a
mechanism of global competition between the neurons believed to be expressed
as a mutual inhibition between the competitive nodes.

Let us consider a set X of m-dimensional input vectors and xp = (xp
1
, . . . ,xp

m) pre-
sented as an input to a network with m+ 1 inputs and n competitive neurons. A
competitive neuron vi receives an excitatory feed-forward signal from each of the
input neurons u j with weight wi j at time corresponding to the value of xp

j
. If we as-

sume that neuron vk is the first competitive neuron to fire (at time tk) as a response
to the input, the nodes vi( f ori 6= k) will receive a signal from the lateral connec-
tions with strength w̃ik. If the lateral connections are excitatory for the neurons that
are topologically close and inhibitory for the remote neurons, then the “winner” will
drive the firing times of the neighboring neurons towards tk. Respectively vk will
delay or prevent remote neurons from firing. Our goal in such a situation is to ad-
just the weights of vk so that it becomes the fastest neuron that could possibly fire
to input spikes encoded in xp, as well as the weights of the neighboring neurons,
so that they will be faster to respond to inputs similar to xp.

In discrete simulations with exhaustive search, we obtained the optimal weights
of neurons with two and three synapses. For each particular interval between the
pre- and post-synaptic spikes ∆t = tpre− tpost, we explored the sets of possible nor-



malized synaptic weights and recorded the one which leads to the fastest response
of the neuron. Plotted against ∆t, the optimal weights formed a curve (Figure 2)
which we approximate as function F (∆t). The adaptation rule suggested here it-
eratively adapts the weights of the competitive neurons towards respective values
from F (·). If after the response to a given input, we shift the weights of the compet-
itive neurons that have fired towards the optimal weights with respect to their delay
in the response, we will effectively decrease their response times to the same in-
put, for the winner, or to similar inputs, for the neurons topologically close to the
neuron.

∆wi j = η(F (tpre− tpost)−wi j ) (1)

where F (·) is the optimal weights function of the difference between the pre-
synaptic ((tpre) and post-synaptic (tpost) spike times, and η is the learning rate.
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Figure 2: Optimal weights as a function of the relative timing between the pre-
and post-synaptic spikes (tpre− tpost). Left: the actual values of the optimal weights
obtained for a neurons with two synapses. Right: Exponential approximation from
the values of the optimal weights obtained for a neuron with three synapses.

The local synaptic competition is achieved via intrinsic quasi normalization of
the weights vectors. Since F (·) describes normalized weights, after training the
weights vector of a single neuron is very close to normalized.

4 Simulations

We tested our model with two of the standard examples of self-organization in
artificial neural networks, i.e. one- and two-dimensional patterns. In the first ex-
periment, we used 10 one-dimensional patterns uniformly distributed in [0,1] which
where presented to a network with 2 input and 10 competitive neurons. The lat-
eral weights where decreasing with the distance between the neurons, starting



with slightly positive for the first and second neighbors, and running negative af-
terwards. The learning was based on the optimal weights function for two weights
as is shown on the left in Figure 2. The results from the simulation are shown in
Figure 3. After about 1000 learning epochs, the network has a topology preserving
map of the input set. Due to the relationship between the neural dynamics and the
weights, the relationship between the firing times and input patterns in not exactly
linear, but rather follows the behaviour of the optimal weights curve and the form
of the membrane potential.
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Figure 3: Competitive learning of one-dimensional input. Each field represents the
firing time of a neuron to a particular pattern. The darker the color, the faster the
response.

In the second experiment, we used two-dimensional patterns uniformly dis-
tributed in a square region [0,4] × [0,4]. The goal was to organize the competitive
neurons in a topology preserving grid. The network consisted of two input and
5×5 competitive neurons. The lateral weights were initialized as in the previous
experiment. In both, simulations the lateral weights and the learning rate were
decreased after each epoch. Results from the second experiment are shown in
Figure 4. Since the relationship between the weights and the input vectors is not
linear, the usual direct comparison of the weights and the input patters is not appli-
cable it this case. We present three examples of a typical response of the network
to the input patterns (0,0), (0,4) and (4,4).

As it can be seen in both experiments, the learning algorithm was able to
achieve a topology-preserving SOM of the competitive neurons. For each input
signal, there was a single competitive neuron responding first, and in some cases
some of its immediate neighbors fired with a small delay.
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Figure 4: Competitive learning of two-dimensional input. Each field represents the
firing time of a neuron to a particular pattern. The darker the color, the faster the
response.

5 Discussion

A few computational models and competitive learning mechanisms that have been
built upon networks of spiking neurons have been suggested. A model of self-
organizing maps of spiking neurons has been applied in computational model-
ing of the pattern interaction and orientation maps in the primary visual cor-
tex [Choe and Miikulainen, 1998, Sirosh and Miikkulainen, 1997]. However, this
model explores only the firing rate of the spiking neurons and learning occurs only
after the network has reached a stable state of firing.

A mechanism of competitive learning and self-organization in networks of spik-
ing neurons has also been presented in [Ruf and Schmitt, 1998]. The work is
based on a spiking neuron model presented in [Maass, 1997a] and implements
a mechanism of encoding the signal in the precise timing of the spikes. Exper-
imentally, the model was shown to exhibit the same characteristic behaviour as
the standard topology preserving SOM. The learning algorithm is built under the
simplifying assumptions of a linear rising phase of the post-synaptic potential. Al-
though later it has been shown that the algorithm can be applied in the case of a
non-linear post-synaptic response, it is not clear and our experiments show that it
might not be the case that the learning suggested in [Ruf and Schmitt, 1998] will
still lead to optimal weights in the network.

Another idea of competitive learning with spiking neurons is presented in
[Song et al., 2000]. The research is based on experimental and modeling stud-
ies and suggest a form of spike-timing dependent synaptic plasticity based on the
relative timing of pre- and post-synaptic spikes. The work explores the role of such
plasticity to facilitate the irregular but more sensitive to pre-synaptic spike timing
firing of the neuron and also concentrates on the local competition between the
synapses. Although the overall behaviour of the model presented there is close to



our results, there is one main difference with our mechanism. It is expressed in
the learning window for the relative time of the pre- and post-synaptic spikes close
to zero, where in contrast to the large strengthening of the synapse suggested in
[Song et al., 2000], our results show that some weakening should occur.

The results presented in this paper show that our model covers the main char-
acteristic behaviour of real self-organizing maps [2]. The suggested approach al-
lows the competitive behaviour of the real neurons to be explored in a simulation
with computationally more powerful and biologically plausible models of spiking
neurons processing temporally encoded information. The derived learning follows
experimental results on synaptic plasticity in real neurons and presents some new
insight into the changes which occur when the timings of the pre- and post-synaptic
spikes are very close in time. The research presented here demonstrates the ad-
vantages of a bi-directional modeling approach between computer science and
neuroscience. It derives ideas from our current knowledge of how the real neurons
operate in order to develop a novel computational model for a learning algorithm in
spiking neurons. Furthermore, the results from simulations with this algorithm are
used to develop hypotheses about the synaptic plasticity and self-organization of
the real neurons.
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