
Hybrid Sequential Machines based on Neuroscience

Stefan Wermter, Christo Panchev

University of Sunderland

Informatics Centre, SCET

St. Peter's Way

Sunderland SR6 0DD, United Kingdom

www.his.sunderland.ac.uk

Abstract

In the past a variety of computational problems have been tackled with di�erent neural network

approaches. However, very little research has been done on a framework which connects neuroscience-

oriented models with connectionist models and higher level symbolic processing. In this paper, we outline

a framework which focuses on a hybrid integration of various neural and symbolic preference techniques in

order to shed more light on how we may process higher level concepts, for instance for language processing

based on concepts from neuroscience. It is a �rst hybrid framework which allows a link between various

levels from neuroscience, connectionist Preference Moore machines and symbolic machines.

1 Introduction

Our existing computational methods lack the 
exibility and reliability of cognitive information processing

in the brain. Although a great deal is known about the construction of the brain, this knowledge has had

little impact on main stream computing. Since 1999, the computational neuroscience network EmerNet has

explored emerging computational neural network architectures based on neuroscience [Wermter et al., 1999]

(http://www.his.sunderland.ac.uk/emernet). This paper is based on this context and attempts to explore

hybrid neural architectures based on neuroscience, in particular for language processing.

Recently, there has been some preliminary work integrating principles from neuroscience into compu-

tational models e.g. [Maass and Bishop, 1999, Thorpe et al., 1996, Wermter et al., 1999, Taylor, 1999,

Denham and Denham, 1999]. Although neuroscience principles have helped to develop new computational

models, the problems they address are still restricted, and they indicate that new evidence from cognitive

neuroscience may help build more realistic brain-inspired computational frameworks.

In many ways there is a challenging distance between lower cognitive neuroscience and higher concepts like in

language processing. However, long-term progress needs cognitive science and neuroscience to be taken more

seriously by computer scientists for high-level processes like language understanding. Our approach attempts

to go beyond the neural approaches that are normally utilized. Our approach is based on the processing

found in the brain, integrates sequential machines at diverse levels both vertically and horizontally, and

exploits recurrent and pulse neural networks for more neuron-like processing. It is envisaged that tasks like
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auditory processing, robust syntactic analysis or semantic classi�cation could bene�t especially from such

processing.

The focus of this new approach here is to explore hybrid neural architectures, including techniques from

cognitive neuroscience and neural computation in order to produce realistic computational neural models of

language processes and complex cognitive operations. These models require the integration and consideration

of signi�cant amounts of knowledge on brain structure and information processing that has been collected

by neuroscientists and cognitive scientists. Furthermore, it is important to determine which principles are

critical for higher level functions like language processing. These models, while being able to perform complex

language processing operations, can also create general notions on language and the brain, and identify the

information requirements for extended models. However, we would like to note that our presented framework

is not about interpretation of biological neural networks or neurobiological modeling. Our goal is rather to

extend the scope of hybrid approaches to neuroscience-inspired computational models of arti�cial neural

networks.

2 Preference Moore Machines

First, we want to describe a synchronous sequential preference Moore machine which transforms sequen-

tial input preferences to sequential output preferences. Later, we will show (1) how symbolic and neural

knowledge can be integrated quite naturally using preference Moore machines and (2) how preference Moore

machines can be linked to more realistic neural modeling based on neuroscience evidence.

A substantial part of the information being processed in arti�cial and biological neural networks is encoded

in a distributed manner and is transferred, or sometimes temporally stored, as pulsed signals between

neurons. Within a given time window, neurons �re, indicating activity with the density or with the particular

temporal location of the spikes. Reading such information from real systems or manipulating it in arti�cial

systems is a complex task that addresses many processing and representational problems. In previous work

we have introduced preference-based processing [Wermter, 1999, Wermter, pear] and an interpretation of

�ring rate and pulse coding schemes [Panchev and Wermter, 2000]. Here we would like to extend this work

substantially towards an interpretation of some more complex neural network representations of cognitive

events. While usually the processing and representation in the brain are believed to be task-dependent,

a common neural/symbolic interpretation of spatio-temporal neural code is possible and crucial for hybrid

systems.

De�nition 1 (Complex Preference, brie
y C-Preference) A complex preference of level l is repre-

sented by an l�m-dimensional matrix a 2 [0; 1]l�m.

The special case of a c-preference of level one is called simple neural preference, or just preference. The

intuition for a simple preference is a concept consisting of features which are present to various degrees. In

[Panchev and Wermter, 2000], we showed that some single coding schemes can be interpreted as c-preferences

where the simple preference at each level represents a given internal state of the code. Furthermore, we showed

that multiple coding concepts can be integrated and can be simultaneously processed in a c-preference where

each level (or several levels) represent a single coding scheme. In the following sections, we will use this
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previous work and the de�nitions to interpret some more complex neural representations as c-preferences of

m-dimensional analog vectors in [0; 1]m or preference Moore machines using c-preferences.

De�nition 2 (Next Corner Reference) The next corner reference r(a) 2 f0; 1gl�m of the c-preference

a 2 [0; 1]l�m is determined for i 2 f1; : : : ; lg and j 2 f1; : : : ;mg as:

rij(a) =

(
0 if aij < 0:5

1 if aij � 0:5

The introduction of the next corner reference allows us to associate each c-preference with a particular corner

of the [0; 1]l�m hypercube, i.e. a discrete symbolic representation.

De�nition 3 (Preference Value of a C-Preference) A preference value of a c-preference a 2 [0; 1]l�m

with respect to its next corner reference r(a) is de�ned as:

pref(a) = 1� distance(a; r(a))
p
lm
2

, where distance(a; r(a)) =

sX
i;j

(aij � rij(a))2

is the distance between the c-preference a and its next corner reference.

p
lm=2 is the maximum distance in the l�m-dimensional c-preference space, that is the distance from the

center of the hypercube to any corner. If the c-preference a is close to its next corner reference then its

preference value pref(a) will be close to 1 and if it is close to the center, then pref(a) will be close to 0.

De�nition 4 (C-Preference Class) Let a 2 [0; 1]l�m be a c-preference with next corner reference r(a) 2
f0; 1gl�m. Then the class of complex preferences of a is called c-preference class c(a) and contains all those

c-preferences with next corner reference r(a), which have the same distance from r(a) as a.

The preference value of a class of c-preferences is the preference value of an arbitrary c-preference which

belongs to this class. This follows directly from the de�nitions of c-preference classes and the preference

value. Figure 1 shows the preference values for the two-dimensional space.

A class of preferences represents a high-dimensional hypersphere of an unlimited number of preferences with

the same distance from the speci�ed corner reference. Figure 2 shows examples of four preference classes

which have the same distance to their corresponding corner reference [Wermter, 1999].

Finally we would like to de�ne a preference Moore machine as a device of sequential processing with c-

preferences. For some input and state, a new state and output is computed. Input, output and state are

multidimensional preferences.

De�nition 5 (Preference Moore Machine) A preference Moore machine PM is a synchronous sequen-

tial machine which is characterized by a 4-tuple PM = (I; O; S; fp), with I, O, and S being non-empty sets

of inputs, outputs and states. fp : I�S ! O�S is the sequential preference mapping and contains the state

transition function fs and the output function fo. Here I, O and S are n-, m- and l-dimensional preferences

with values from [0; 1]n, [0; 1]m and [0; 1]l, respectively.
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Figure 1: Preference values z of two-dimensional preferences (x y)
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Figure 2: Classes of preferences in three-dimensional space
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3 Using Preferences at Symbolic, Connectionist, and Neuro-

science Levels

A Preference Moore machine can be seen as a computational machine which has possible links to higher

level symbolic machines or lower level neuroscience-inspired concepts. For instance, a SRN network, a form

of sequential connectionist network [Elman et al., 1996], is one type of a preference Moore machine and

can be interpreted symbolically as �nite state machines. It has been shown [Wermter, 2000], that symbolic

transducers can be extracted from SRNs using our preference framework. Each state and each output within

this preference Moore machine was mapped towards the references of an n-dimensional space. That way, a

symbolic transducer represented a higher, more abstract representation of the more detailed connectionist

preference Moore machine.

In the remaining part of this paper we will also illustrate some links of the preference framework to the

neuroscience level. While in [Panchev and Wermter, 2000] we presented the concept of neural preferences

on a single neuron level, here we would like to concentrate on more complex cortical functional structures

associated with cognitive functions in the brain: cell assemblies and syn�re chains.

3.1 Cell Assemblies as C-Preferences

The concept of a cell assembly was introduced as a functional and structural model for cortical processes

and neuronal representations of external events [Hebb, 1949]. Hebb presented the idea that complex objects

and stimuli, as well as more abstract entities like concepts, ideas and contextual relations in the brain

are represented as simultaneous activation of large groups of neurons. Single cells can belong to di�erent

assemblies and the cells in one assembly are not necessarily close to each other. If, as a result of an external

event, a suÆciently large subset of the cells in the assembly are stimulated, the whole assembly becomes

active and may sustain activity for some period of time even when the external event has disappeared.

Cell assemblies are a widely accepted paradigm for feature binding mechanisms in the brain. In many

arti�cial neural networks, cell assemblies are explored as a model of associative memories [Palm, 1986,

Frans�en et al., 1994]. Di�erent interpretations of the paradigm can serve as a concept of short or long term

memory models. The concept of neural assemblies in combination with activity-dependent (spatio-temporal)

Hebbian learning provides a paradigm for long term memory [Wennekers and Palm, 1999].

Many arti�cial neural network models of cell assemblies use a simple neuron as the elementary computational

unit of the network. However, there are several models of associative memories with spiking neurons that use

models of cortical columns as functional units [Frans�en and Lansner, 1998]. Although in both approaches a

neuron or column represents a single feature, there are di�erent interpretations of the behavior of that unit.

3.1.1 Cortical column as a threshold gate

In the �rst interpretation, a column is considered to behave as a threshold gate, that is, if a suÆcient number

of excitatory neurons �re, the column is said to be active and the respective feature present. If there are not

enough �ring neurons, the column is said to be non-activated and so is the feature it represents.

The neural preferences interpretation of a model with cortical columns acting as threshold gates is analogous

to the case of single neurons and synchrony code. Let us consider a model of synchronously �ring cell

assemblies, with �t being a time interval in which all spikes would be considered as synchronous. A sequence
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of synchronously �ring assemblies will be de�ned in a sequence of intervals �t1;�t2;�t3; : : :, where the s
th

interval is de�ned as �ts = f t j t0s < t < t00s g, t0s and t00s are the beginning and the end of the interval, and

j�tsj = t00s � t0s is the length of the interval. In some implementations of spiking neurons, the sequence of

intervals might represent a continuous time set, i.e. t00s = t0s+1, while in others there might be an explicit

time shift between the separate intervals of synchronous �ring, i.e. t00s < t0s+1. For each interval we can de�ne

�ts as the mean time of the spikes in �ts. Examining the spikes from time j�tsj before ts and j�tsj after
ts, that is in interval 2j�tsj around ts, we can de�ne a spike time preference of a neuron (threshold gate

column) in the interval �ts as:

ais =

(
1� jti

s
��tsj
�ts

if neuron (column) i has �red in the time window 2�ts

0 if neuron (column) i has not �red in the time window 2�ts

Here, tis denotes the �ring time of neuron (column) i. Then the vector as = (a1s ; a
2
s; : : : ; a

N
s ) is the c-preference

vector of cell assemblies of single neurons or threshold gate columns in the time interval �ts. According to

the above de�nition of as, a higher density in the synchronous �ring in the assembly will lead to values in

the preference vector close to 1. Alternatively, lower density of the spikes inside the time window will lead to

values close to 0.5. Finally, �ring times outside the time window will lead to values close to 0 and therefore

rejection of the represented features.

A neural preference class of cell assemblies of single neurons or threshold gate columns can be interpreted as

a set of all preferences that represent the cell assembly for the same information with equal strength. This

interpretation of the classes allows us to abstract from the particular distribution of the synchronous spikes

in the time window usually considered as noise in biological systems.

3.1.2 Cortical column as a population of neurons

A second and more interesting interpretation of the behavior of a single column is when a column is considered

as a population of neurons representing one particular feature and the level of activation of that feature is

determined by the relative number of excitatory neurons that have �red at a particular time, i.e. examining

the population code of a single column. Such a concept is a computationally eÆcient approach of encoding

features with analog values. It allows the combination of two di�erent encoding schemes within a single

network: graded activation of features as a population code of a single column and binding of features via

synchrony �ring of cell assemblies.

Let us now consider such a column i with P i excitatory and Qi inhibitory neurons. For a particular time

interval �ts of synchronous �ring, the number of excitatory neurons in column i that have �red is denoted

as pis, and respectively, the number of inhibitory neurons would be qis. We can de�ne a value representing

the activity of the column as:

ais =
1

2

�
1 +

pis
P i

� qis
Qi

�

If most of the excitatory neurons in the column have �red and there is no activity of the inhibitory neurons,

the activation value will be close to 1 and therefore indicate a strong preference for the feature that the

column represents. The opposite situation will have a value close to 0 and would indicate strong suppression

of the feature in the time interval. Finally, an activation value close to 0.5 would indicate low activity in the

column and therefore no activation or suppression of the represented feature.
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The vector constructed from the above de�ned activation values for all columns in a network with N columns

as = (a1s; a
2
s; : : : ; a

N
s ) is the neural c-preference of cell assemblies of cortical columns using population code.

A particular c-preference would represent the state of the network at a particular time and therefore contain

a representation of the complex object (event) activated in the network at that time.

The class of c-preferences of cell assemblies of cortical columns using population code will allow us to abstract

from the mutual 
uctuations in the activity of the features included in a particular object. Such a class will

include all c-preferences that represent the same object (event) with equal total activity of the assembly.

Furthermore, the corner preference of the class will represent the object (event) as a binary vector and classes

with the same corner preference will represent the same entity but with di�erent strength.

3.2 Dynamic representations: Syn�re Chains and C-Preferences

After having introduced cell assemblies, we now look into more dynamic representations, i.e. syn-

�re chains. The concept of syn�re chains as a model of cortical function was introduced by Abeles

[Abeles, 1982, Abeles, 1991]. It explains some phenomena of precise timings in spatio-temporal patterns

in frontal areas of the brain. A syn�re chain consist of precisely timed repeating sequence of synchronously

�ring small pools of neurons. The �ring time in a chain can spread over a large time period - usually a few

hundred milliseconds, or up to one second. The neural pools are linked together in a feedforward chain, so

that a wave of activity propagates from pool to pool in the chain. It has been shown that a computationally

eÆcient number of spatio-temporal patterns can be stored in a network constructed of syn�re chains where

one neuron or cortical column can participate in several chains or several times in the same syn�re chain

[Herrman et al., 1995].

It is suggested that the activity waves in the syn�re chains represent an elementary cognitive event

[Bienenstock, 1995]. Syn�re chains can be applied as storage elements of an associative memory: long term

store for learning, recognition and recall of spatio-temporal patterns and as a possible physical substrate for

short term memory [Wennekers and Palm, 1999]. Furthermore, it has been shown that syn�re chain are able

to regenerate ordered sequences of patterns [Aertsen et al., 1996, Abeles et al., 1993, Bienenstock, 1995].

Syn�re chains can be viewed as a possible extension of the associative memories from static spatial patterns

to dynamic spatio-temporal ones. Furthermore, there are several properties of the syn�re chains that result

from their dynamic behavior. For example the �ring patterns exhibit cyclic activity, the order of �ring of

the pools in a chain is believed to be of signi�cance, di�erent chains can share the same pool at di�erent

times without crosstalk, etc. We suggest that a syn�re chain is best interpreted as a dynamic symbolic

representation and present the concept of preference Moore machine as one possible solution.

3.2.1 C-Preferences in the Syn�re Chains

In an arti�cial neural network model, a syn�re chain would represent a composite cognitive event. The

event consists of several entities which might have explicitly de�ned semantics. Each pool in the chain would

represent a single composite concept (entity). Therefore we can represent the activation of the network of N

columns at a given interval �ts as a c-preference as = (a1s ; a
2
s; : : : ; a

N
s ), where each value in the preference

vector equals the population activity of a given column in the network. Such an interpretation is analogous

to c-preferences of cell assemblies of a cortical column with population code and the formulas de�ned above

are valid here:
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ais =
1

2

�
1 +

pis
P i

� qis
Qi

�
:

If the network has well-de�ned, say N , pools of columns, the c-preference can be constructed based on the

population activity of these pools. In this case P i = Qi is the total number of columns in pool i, and

pis denotes positive activity, i.e. is the number of excitatory activated columns of pool i in interval �ts,

respectively qis denotes the negative activity in the pool, i.e. the number inhibitory activated columns.

3.2.2 Syn�re Chains as a Preference Moore Machine

A c-preference will represent the activity of one or several pools in the chain at particular time. To integrate

the sequence of �ring of the pools in the syn�re chains, we develop a sequence of c-preferences representing

the activity at each time step and construct a preference Moore machine that would be able to represent

the behavior of syn�re chains in the network. A direct interpretation of the representation of a cognitive

event in the syn�re chain (which is an ordered sequence of synchronous �ring of neuronal pools in the chain)

would be a �nal state (or set of states) of a preference Moore machine. If the network has activated only

one event, the �nal state would be the one representing that event. Respectively if the network activates

several cognitive events, the preference machine will have multiple �nal states at the end, each representing

a particular event. The intermediate state(s) of the machine represent the history of the �ring patterns of

the network. A repeated intermediate state(s) sequence would indicate the cycling activity of the network.

4 Initial Case Study: A preference analyzer based on Pulse Neural

Networks

We are currently working on a pulsed neural network model for semantic understanding based on feature

binding and slot �lling. The network consists of three layers of integrate-and-�re spiking neurons and uses

a model of a cortical column as a functional unit (Figure 3.). The input to the network is a sequence of

role/�ller pairs representing a single sentence. The input layer receives a distributed representation of a role

and/or a �ller at a time. The working (short-term) memory layer has uniformly decaying weights and in

the absence of an input, the activation slowly vanishes as the weights become weaker. This layer contains

the current context of the sentence. It also retrieves constraints about possible role/�ller pairs from the

long-term memory layer. The task of the working memory is to combine the current input, context and the

constraints from the long-term memory.

When performing a parallel constraint satisfaction, this layer enters into a mode of partial synchrony �ring

where the features of the assigned role/�ller pairs are bound together. To perform this task, while receiving

the input, the working memory layer performs an online spatio-temporal correlation-based (Hebbian) learning

based on the current input and the constraints from the long-term memory, i.e. the neurons in the working

memory have dynamic synapses re
ecting the current context of the sentence. In contrast, the synapses

in the long-term memory layer change over a much longer time scale. The long-term memory layer should

contain possible combinations of role/�ller pairs and contexts. During processing, the long-term memory

receives the current context from the working memory, and its task is to place constraints on the current

context and feed it back to the working memory.
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At a higher level of abstraction, such a model can also be viewed as a preference Moore machine (I; O; S; fp).

We can de�ne the input set I to contain all simple preferences representing the network input set using the

well-known mean �ring rate code. The output set O will contain the interpretation of the working memory

in a synchrony code as cell assemblies. The state set S of the machine will contain complex preferences that

are an interpretation of the layers of working and long-term memory as cell assemblies. Such a preference

Moore machine will perform a mapping from the input preferences which can be symbolically interpreted as

roles and words in a sentence and the current state as a complex preference into an output set of role/�ller

pairs and a new state of the working and long-term memory.

Pyramidal cell

Inh ibitory neuron

( A ) ( B )

Inpu t

Working  m
emory

Long − term
 m

emory

Figure 3: Example of a pulsed neural network model of semantic slot �lling based on Hebbian assemblies of

cortical columns. (A) Model of a cortical column used in the network. There is dense connectivity between

the neurons within the column: inhibitory links from the inhibitory to the pyramidal cell and excitatory

links between the pyramidal cells. (B) The three-layered model of the network. Each circle represents a

single column from A. There is sparse connectivity between the neurons within a layer. However, on a

single column level, the layer is fully connected. Furthermore, there are feedforward connections from the

input layer to the working memory layer and from the working memory to the long-term memory. Feedback

connections are from the columns of the long-term memory to the working memory.

5 Discussion and Conclusion

In this paper we have explored the use of preference Moore machines at symbolic and connectionist levels

but, in particular, we have made some new contributions based on the neuroscience level. We argue that in

the long run it will be necessary to understand more of the underlying neuronal processing and that symbolic,

connectionist and neuroscience levels are useful levels of abstraction. By considering the neuroscience level,

important new insights may be gained for higher symbolic connectionist levels.

In comparison to symbolic structured methods, e.g. symbolic chart parsers and context free grammars,

this approach may seem very reductionist from a language processing point of view. However, we have
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to consider that symbolic Moore machines and connectionist preference Moore machines already sup-

port very important general properties of language and they form the basis in the Chomsky hierarchy

[Hopcroft and Ullman, 1979].

In contrast to other research work in the area of �nite automata and connectionist networks

[Manolios and Fanelli, 1994, Omlin and Giles, 1994, Omlin and Giles, 1996], we do not only want to learn

an acceptor which learns to accept a correct input sequence but we are interested in building robust learning

preference Moore machines which can produce output. Furthermore, an important aspect of our work is

that we want to ground these processing mechanisms in constraints which have been known from cognitive

and biological neuroscience.

At the symbolic/connectionist level, connectionist preference Moore machines develop internal states which

have distributed representations and therefore have very di�erent representations than traditional symbolic

automata or statistical HMM models. There is potentially an unlimited number of states in preference

Moore machines, di�erent from fuzzy automata or statistical automata [Kosanovic, 1995, Omlin et al., 1995].

Furthermore, if we look at the connectionist level and neuroscience level, preference Moore machines are

extended by the time aspect in the representation coding.

Architectural abstractions at di�erent levels are important in order to link higher level cognitive func-

tions like language processing with the neuroscience level. The complexity of cognitive and neuro-

biological processes makes it seem plausible that several representational levels may be advantageous

[Gutknecht, 1992, Sun, 1996]. Furthermore, although the cortex is relatively 
atly structured compared

to its size [Hubel and Wiesel, 1979], it is structured and far from random. It is partially predetermined at

birth but also develops much further in particular in the �rst years [Bloom, 1993]. We would like to conclude

that abstraction levels at symbolic, connectionist and neuroscience levels may be advantageous and that the

preference approach is one promising way to link these levels for higher cognitive processing.
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