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Abstract

We present an approach for recognition and clustering of spatio tem-
poral patterns based on networks of spiking neurons with active dendrites
and dynamic synapses. We introduce a new model of an integrate-and-
fire neuron with active dendrites and dynamic synapses (ADDS) and its
synaptic plasticity rule. The neuron employs the dynamics of the synapses
and the active properties of the dendrites as an adaptive mechanism for
maximizing its response to a specific spatio-temporal distribution of in-
coming action potentials. The learning algorithm follows recent biological
evidence on synaptic plasticity. It goes beyond the current computational
approaches which are based only on the relative timing between single pre-
and post-synaptic spikes and implements a functional dependence based
on the state of the dendritic and somatic membrane potentials around
the pre- and post-synaptic action potentials. The learning algorithm is
demonstrated to effectively train the neuron towards a selective response
determined by the spatio-temporal pattern of the onsets of input spike
trains. The model is used in the implementation of a part of a robotic
system for natural language instructions. We test the model with a robot
whose goal is to recognize and execute language instructions. The research
in this article demonstrates the potential of spiking neurons for processing
spatio-temporal patterns and the experiments present spiking neural net-
works as a paradigm which can be applied for modeling sequence detectors
at word level for robot instructions.

Key words: spiking neurons, active dendrites, dynamic synapses, synaptic
plasticity, temporal sequence detection, natural language, intelligent robotics
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1 Introduction

The concept of exploiting the timing of spikes as an alternative of or compli-
mentary to the mean firing rate has provided new directions for further progress
in neural computing models. Different models of spiking neurons have been de-
veloped (Hodgkin and Huxley, 1952; Rall, 1989; Segev et al., 1989; Kistler et al.,
1997; Panchev et al., 2002), but there is still an ongoing debate on which are the
essential properties of the biological neurons necessary to be simulated in order
to achieve the computational power of a real neural system. The work presented
in this article extends the current modeling paradigms of spiking neurons, in
particular the leaky integrate-and-fire neuron (Maass and Bishop, 1999), by in-
troducing a computational interpretation and exploring the functionalities of
active dendrites and dynamic synapses in an integrated model.

For a long time, dendrites have been thought to be the structures where
complex neuronal computation takes place, but only recently have we begun
to understand how they operate. The dendrites do not simply collect and pass
synaptic inputs to the soma, but in most cases they actively shape and integrate
these signals in complex ways (Stuart et al., 2001; Poirazi and Mel, 2001; Aradi
and Holmes, 1999). With our growing knowledge of such processing in the
dendrites, there is a strong argument for taking advantage of the processing
power and active properties of the dendrites, and integrating their functionality
into artificial neuro-computing models (Panchev et al., 2002; Horn et al., 1999;
Mel et al., 1998).

Furthermore, there is a variety of dynamic processes in the axonal terminal,
including paired-pulse facilitation or depression, augmentation, post-tetanus po-
tentiation, etc. The real neurons use these short term dynamics as an additional
powerful mechanism for temporal processing. Several studies have explored the
mechanisms of synaptic dynamics (Tsodyks et al., 1998; Abbott et al., 1997;
Zucker, 1989) as well as their computational properties (Natschläger et al., 2001;
Pantic et al., 2002), highlighting the advantages of neurons and neural networks
with such synapses.

The mechanisms of the active dendrites and dynamic synapses operate on
different time scales, and can be complimentary to each other. The combina-
tion of their functionality is most likely to be heavily used by the real neurons
and could add significant computational advantages into the artificial neural
networks. However, so far these two neuronal mechanisms have been primarily
modeled in isolation (Spencer and Kandel, 1961; Schutter and Bower, 1994a,b,c;
Liaw and Berger, 1996; Senn et al., 2001).

The work presented here introduces a computational interpretation and in-
tegration of functional properties of neurons with active dendrites and dynamic
synapses as well as a synaptic plasticity rule associated with such neurons. The
active dendrites manipulate the membrane time constants and resistance of the
neuron and are able to precisely shape the post-synaptic potentials within a
time scale of up to a few hundred milliseconds. Complimentary to this, the
dynamics of the synapse is able to manipulate the post-synaptic responses on
a time scale from a few hundred milliseconds up to several seconds. The in-
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tegration of active dendrites and dynamic synapses into a model of a spiking
neuron adds a functionality for temporal integration, which could be particu-
larly powerful in detecting the temporal structure of incoming action potentials.
Such functionality is required in many perceptual and higher level cognitive sys-
tems in the brain, e.g. speech and language processing. The model developed
here is based on the integrate-and-fire neuron with active dendrites presented
in Panchev et al. (2002). The new development introduces short-term synaptic
facilitation and depression and generalization of the training algorithm from
input stimuli of single spikes to spike trains.

The new model of a spiking neuron is used in the development of a system
for language instructions given by humans to a robot. The approach of using
a robot platform for testing the performance and functionality of an artificial
neural network model has many advantages (Webb, 2001). Similar to living
organisms, robots can be autonomous behaving systems equipped with sensors
and actuators. Furthermore, the introduction of biologically inspired models
into robotics could bring significant further advances into the field of intelli-
gent robotics (Sharkey and Ziemke, 2001, 2000; Sharkey and Heemskerk, 1997).
Using existing technologies, robots can only master basic reactive or prepro-
grammed behaviors. They fail to follow some of the fundamental functions of
living organisms: their development, learning and adaptation to the environ-
ment. The work presented in this article is a contribution towards overcoming
these limitations and building intelligent and adaptable robots. In the experi-
mental section of this article, we present a model of spiking neural network for
word recognition as part of a robot understanding natural language instructions.

In section 2, we introduce the new model of a spiking neuron with active
dendrites and dynamic synapses and examine some of its critical properties for
temporal integration of incoming spike trains. Section 3 presents the learning
algorithm for the synapses included in the model. The experiments in section 4
explore the performance of the model for phoneme sequence detection and word
recognition as part of a system for language instructions of a robot.

2 Spiking neurons with active dendrites and dy-
namic synapses (ADDS neurons): temporal
integration of input spike trains

The neuron model presented in this section introduces the advantages of the
combined functionality of dynamic synapses and active dendrites. The neu-
ron is able to maximize its response and detect a particular temporal sequence
via a system of implicit “delay” mechanisms. These mechanisms are based on
the modulation of the generated post-synaptic potentials resulting from the dy-
namics of the synapses and the active properties of the dendrites. The learning
algorithm presented in the next section tunes the “delay” mechanisms such that
they generate a maximum response, in terms of the membrane potential at the
soma, for a particular temporal sequence of input spike trains.
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2.1 The Neuron Model

A schematic presentation of the model is shown in figure 1. The neuron receives
input spikes via sets of dynamic synapses Si, each attached to a particular active
dendrite i. In addition, the neuron has a set of synapses S attached close to or
directly at the soma.

Figure 1: Model of a neuron with active dendrites and dynamic synapses.

The total post-synaptic current Isi generated by all dynamic synapses at
dendrite i is described by:

τ s
d

dt
Isi = −Isi (t) +

∑
j∈Si

wij
∑

t(f)∈Fj

ρ(∆t(f))δ(t− t(f)) (1)

where synaptic connection j at dendrite i has weight wij , Fj is the set of pre-
synaptic spike times received at the synapse and δ(·) is the Dirac δ-function.

Furthermore, the post-synaptic current passing through the dendrite into
the soma is described by:

τdi
d

dt
Idi = −Idi (t) +Rdi I

s
i (t) (2)

Experimental evidence shows that the synaptic transmission properties of
cortical neurons are strongly dependent on the recent pre-synaptic activity (Ab-
bott et al., 1997; Tsodyks et al., 1998). The individual post-synaptic responses
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are dynamic and can increase (in case of synaptic facilitation) or decrease (in
case of of synaptic depression). Here, the synaptic dynamics is described by
the function ρ(·) which depends on the time ∆t(f) between the current and the
earliest spikes in Fj :

ρ(∆t(f)) = µe−
[

∆t(f)−τds
σ

]2
(3)

with a time constant τds = 1 − wij , and scaling parameters σ and µ. Since
the time constant depends on the weight of the synapse, an input spike train
arriving at a stronger synapse will lead to a quicker short-term facilitation of
the synapse, followed by a sharp depression, and generate an earlier increase of
the membrane potential at the soma (figure 2 (A)). Respectively, a spike train
arriving at a weaker synapse will generate a delayed increase of the membrane
potential. The short-term facilitation and depression of the synapse operate
on a time scale from a few hundred milliseconds up to a few seconds. The
combined response of the dynamic synapses partially leads to the prolonged
synaptic integration of cortical neurons presented in Beggs et al. (2000).

Real neurons show a passive response only under very limited conditions.
In many brain areas, a reduction of ongoing synaptic activity has been shown
to increase the membrane time constant and input resistance, suggesting that
synaptic activity can reduce both parameters (Häusser and Clark, 1997; Paré
et al., 1998). The computational model of active dendrites presented in this
article is based on such observations. Here, the time constant τdi and the resis-
tance Rdi are set to be dependent on the post-synaptic current into dendrite i
and determine the active properties of the dendrite (see Panchev et al. (2002)
and appendix A.1 for details). As shown in the next section, the effect is that
a dendrite receiving strong post-synaptic input from a single spike generates
a sharp earlier increase of the membrane potential at the soma, whereas the
potential generated from a weaker input signal will be prolonged (figure 2 (A)).

A simpler equation holds for the total current I
s

from all synapses feeding
directly to the soma:

τ s
d

dt
I
s

= −Is(t) +
∑
j∈S

wj
∑

t(f)∈Fj

δ(t− t(f)) (4)

Finally the soma membrane potential um is:

τm
d

dt
um = −um(t) +Rm(Id(t) + I

s
(t)) (5)

where Id(t) =
∑
i I
d
i (t) is the total current from the dendritic tree, and I

s
(t) is

the total current from synapses attached to the soma.
The current from dendrite i generates part of the potential at the soma,

which we will call partial membrane potential and annotate as umi . If pre-
synaptic input arrives only at dendrite i then umi = um . The total partial
membrane potential umd =

∑
i u

m
i is the somatic membrane potential generated

from all dendrites, i.e. excluding the synapses feeding directly to the soma.

5



The next section will present how the above dynamic and active mechanisms
of the neuron work and allow spatio-temporal integration of incoming action
potentials which facilitates the neuron’s sensitivity to the temporal structure of
the incoming spike trains.

2.2 Spatio-temporal integration of synaptic input in a neu-
ron with dynamic synapses and active dendrites

As shown in the next section, two of the critical factors defining the neuron’s
response and adaptation are the timing and the amplitude of the maximum of
the membrane potential at the soma. Figure 2 shows the response of a neuron
with dynamic synapses and active dendrites to the same spike trains coming
through synapses with different strength. In the case where w = 0.8 the spike
train generates an earlier and sharp peak of the membrane potential at the
soma. If the synaptic strength is smaller, e.g. w = 0.2, the time constants of
the dynamic synapse τds and the active dendrite τdi will be longer, the resistance
Rdi will be lower and consequently the peak of the membrane potential is delayed
and has a smaller amplitude.
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Figure 2: (A) Membrane potential at the soma generated by a single input spike
train arriving at a single synapse (two cases of synapses with different weights);
(B) Zoom-in around the peak of membrane potential for w = 0.8.

Based on such temporal integration, the neuron is able to maximize its
response to spike trains with different onset times. Figure 3 shows two cases of
a response of a neuron to two spike trains with different onset times. In both
cases the total synaptic weight is the same, however the response at the soma
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is substantially different. With appropriately adjusted weights (figure 3 top),
the neuron is able to compensate for the delay of one of the spike trains, by
delaying the post-synaptic current generated by the earlier one. The result is
quasi-synchronous peaks of the partial membrane potentials, and a significantly
higher potential generated at the soma. Such temporal integration provides
the neuron with a powerful mechanism for a selective response to the temporal
structure of the input stimuli.

3 Synaptic plasticity

There are two different types of synapses at the ADDS neuron, each of them
having a different functional role. The dynamic synapses attached to active
dendrites are part of the mechanism for spatio-temporal integration and play
a role in the recognition of the temporal structure of the input signals. The
neuron also includes synapses directly attached to the soma. They have a very
fast and strong influence on the membrane potential at the soma and are very
efficient for lateral connections between cooperative or competitive neurons.
Consequently, the learning algorithms for the two types of synapses have differ-
ent implementations. The specific tuning of the dynamic synapses attached to
active dendrites implements the neuron’s adaptation towards responding to a
particular temporal sequence of input spike trains, whereas the plasticity of the
synapses attached to the soma reflects the cooperation within or competition
between clusters of neurons.

3.1 Plasticity in the dynamic synapses attached to the
active dendrites

The task of the learning algorithm developed for the dynamic synapses attached
to the active dendrites is to adjust the weights of the neuron, so that it is
able to synchronize the peaks of the partial membrane potentials, and therefore
maximize the response of the total somatic membrane potential for a particular
temporal distribution of spike trains.

Current views on the intra-cellular mechanisms underlying synaptic plas-
ticity postulate that the direction and magnitude of the change of the synaptic
strength depend on the relative timing between the pre- and post-synaptic spikes
which is expressed in the Ca2+ concentration modulated by pre-synaptic as well
as back-propagating post-synaptic action potentials (Magee and Johnston, 1997;
Markram et al., 1997; Bi and Poo, 1998; Debanne et al., 1998; Feldman, 2000;
Larkum et al., 1999). The post-synaptic action potential is propagated back
to the synapse by virtue of the active properties of the dendrites under com-
plex control mechanisms. Its amplitude and duration depend on a variety of
conditions, including the state of the soma, basal dendrites and the state and
spatial position of the synapse’s own dendritic branch (Johnston et al., 1999;
Stuart et al., 1997; Buzsáki and Kandel, 1998; Spruston et al., 1995). In our
approach, we view the signal carried by the back-propagating action potential
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partial membrane total membrane
input spikes potentials (umi ) potential (um)

Figure 3: Integration of two spike trains through two dynamic synapses with
different strength attached to separate active dendrites. The onset of one of the
spike trains is delayed by 300ms. Top: Both spike trains arrive at two synapses
with equal strength, w1,2 = 0.45 each. Bottom: The first spike train arrives at a
synapse with strength w1 = 0.3 and generates a peak of the partial membrane
potential around 800ms after the onset time of the stimulus. The second spike
train arrives at synapse with strength w2 = 0.6 and generates a peak partial
potential around 500ms after the onset time. The response of the neuron to the
first spike train is delayed (prolonged) compared to the response to the second
one. As a result, the neuron has achieved a quasi-synchronization of the partial
membrane potentials generated from the spike trains (middle column, bottom
graph), and its response (the membrane potential at the soma, bottom right
graph) is much stronger.
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as having two main parts: a signal depending on the state of the soma and basal
dendrites, and a signal depending on the state of the dendritic branch of the
synapse.

Immediately following a post-synaptic spike at time t̂ (in a simulation with
time step ∆t), the synapse j at dendrite i, which has received a recent pre-
synaptic spike, is sent a weight correction signal:

∆wij =
∆umi (t̂)−∆um(t̂)√

∆t2 + (∆umi (t̂)−∆um(t̂))2

(6)

where ∆umi (t̂) and ∆um(t̂) are the changes in the partial membrane poten-
tial generated by dendrite i and the total membrane potential respectively just
before the post-synaptic spike.

The weight correction signal has two main contributions: a signal from the
dendrite ∆umi and a signal from the soma ∆um. If we remove ∆um, the rule
will be:

∆wdi =
∆umi (t̂)√

∆t2 + (∆umi (t̂))2

(7)

and implement the following logic of the learning algorithm: if a post-synaptic
spike occurs before the peak of the partial membrane potential (i.e. in the
ascending phase of the membrane potential, ∆umi > 0), the synaptic weight will
be increased, so that the next time the peak will occur earlier, i.e. closer to the
post-synaptic spike time. On the other hand, if a post-synaptic spike occurs
after the peak of the partial membrane potential, the synaptic weight will be
decreased, and the peak will be delayed, i.e. again closer to the post-synaptic
spike time.

Figure 4 (A) shows ∆wdi for synapses with different weights as a function
of the relative timing between the pre- and post-synaptic spikes. ∆wdi = 0,
i.e. no change in the weight occurs, if the post-synaptic spike coincides with
the maximum of umi . The synaptic plasticity learning window is different for
synapses with different strength. Figure 4 (B) shows ∆wdi as a function of the
synaptic strength and the relative timing between the pre- and post-synaptic
spikes. Depending on the strength of the synapse, for a pre-synaptic spike
arriving shortly before the post-synaptic action potential, the synaptic weight
is increased. If however, the pre-synaptic spike precedes the post-synaptic action
potential by a relatively long time, the synaptic weight is reduced.

The implementation of the ∆wdi rule does not cover the negative part of
the learning window. Input spikes arriving after the post-synaptic spike are
ignored. This is based on recent experiments presented in Froemke and Dan
(2002), where a triplet of pre-post-pre synaptic spikes in layer II/III neurons of
the visual cortex induced an LTP dominating result. For an input arriving as
spike trains, which is the case modeled in this article, this means that the input
spikes arriving before the post-synaptic spike are the ones that will determine
the synaptic plasticity.
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Figure 4: (A): The correction signal ∆wdi that would be sent from the dendrite to a

synapse with weight 0.8 or 0.3 in the event of a post-synaptic spike. ∆wdi = 0, i.e. no

change in the weight occurs, if the post-synaptic spike is at the point of the maximum

of umi . (B): ∆wdi plotted against the relative time between the pre- and post-synaptic

spikes (tpost − tpre) and the synaptic weight wdi .
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The ∆um term implements a logic similar to ∆umi , but with respect to the
total membrane potential and the total synaptic strength across all dendrites.
It drives the neuron to fire close to the peak of the total membrane potential
and has a weight normalization effect. Its role is to prevent the weights of the
synapses from reaching very high values simultaneously, as well as to prevent a
total decay in the synaptic strength. If the neuron is forced to always fire close
to the peak of the membrane potential at the soma (coinciding with the peaks
of the partial membrane potentials), the total synaptic strength will have to be
relatively constant and thereby any changes of synaptic strength will lead to a
redistribution (rather than a global gain/loss) of synaptic strength.

However, achieving a post-synaptic spike exactly at the peak of the total
membrane potential is not always possible, and in most cases undesirable, since
it will limit the noise handling capabilities of the neuron. A neuron trained to fire
exactly at the peak of its membrane potential will respond only to a very specific
temporal pattern without any noise. Therefore, if the post-synaptic spike is
sufficiently close (for a predefined constant ε) to the peak of the membrane
potential, ∆um is ignored, i.e.:

∆um = 0 if |∆wm| ≤ ε, where ∆wm =
∆um(t̂)√

∆t2 + (∆um(t̂))2

. (8)

The value of ε allows control over the noise tolerance of the neuron.
Following the weight correction signal, the weights of the synapses are changed

according to:

wnewij =


woldij + η∆wij(1− woldij ) if ∆wij ≥ 0 and Fj 6= ∅;
woldij + η∆wijwoldij if ∆wij < 0 and Fj 6= ∅;
woldij − ηdecaywoldij if Fj = ∅.

(9)

with a learning rate parameter η. The weight correction signal ∆wij depends
on the term ∆umi which can be non-zero only if a pre-synaptic spike has recently
arrived at the synapse, i.e. Fj 6= ∅. If the synapse has not received a pre-synaptic
spike, the weight decays with a rate proportional to ηdecay.

Following recent advances in the experimental evidence on synaptic plasticity
in the biological neurons, several algorithms for learning with spiking neurons
have been developed as functions of the relative timing of the pre- and post-
synaptic spikes (Song et al., 2000; Natschläger and Ruf, 1999; Kempter et al.,
2001; Panchev and Wermter, 2001; Rao and Sejnowski, 2001). However, these
algorithms are explicitly based on a single pair of pre- and post-synaptic spike
events and cannot be applied to more complex input stimuli involving multiple
spikes arriving at the same synapse, e.g. spike trains. The aim of the algorithm
presented here is to achieve synaptic plasticity which exceeds the applicability
of the algorithms explicitly based on the relative timing between single pre-
synaptic spikes and a post-synaptic spike, while still being consistent with the
biological evidence for synaptic plasticity of the real neurons (see also the dis-
cussion in section 5). The learning algorithm presented in this section applies a
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local synaptic plasticity rule, but goes beyond the simple relative spike timing,
and incorporates functions of the membrane potential at the dendrite and the
soma, as well as the synaptic strength. An earlier version of the algorithm,
based on the same principles, has been shown to effectively train the neuron to
an arbitrary precision, when responding to a temporal sequence of single pre-
synaptic spikes within an interval of less than a hundred milliseconds (Panchev
et al., 2002) as well as achieving weight normalization and an even distribution
of the synaptic strength. The new version of the algorithm generalizes into a
neural adaptation for input spike trains and temporal sequences spanning from
a few hundred milliseconds up to several seconds.

One main difference in receiving an input as a spike train, in contrast to a
single spike, is that the membrane potential is not a smooth curve, but it con-
tains many local peaks. If the learning algorithm described by equations (6) - (9)
is directly applied to such an input, it will converge to one of these local peaks
and not drive the neuron towards firing close to the global maximum. However,
a closer look into the membrane potential curve (figure 2 (B)) reveals that: (1)
during the ascending phase, the local increase of the membrane potential is ei-
ther steeper, or longer compared to the local decrease; and (2) during the global
descending phase, the local decrease is either steeper or longer. Consequently,
if during the global ascending phase, the neuron’s firing time fluctuates mod-
erately around a local peak, on average over several presentations of the same
stimuli, it has a higher probability of coinciding with the local ascending too.
Similarly, if the neuron’s firing time fluctuates moderately around a local peak
in the global descending phase, it has a higher probability of coinciding with a
local decrease of the membrane potential. Similar arguments apply if, instead
of fluctuating the post-synaptic spike times, the timing of the single spikes in
the input contain noise, and therefore causing a fluctuation of the timing of the
local peaks.

The above arguments provide the basis for the generalization of the synaptic
plasticity rule for neurons receiving input as spike trains. They outline the nec-
essary condition for consistency between the ascending and descending phases
of membrane potentials generated by single spikes and by spike trains. The
logic implemented by the ∆wdi rule can be applied for post-synaptic potentials
generated by spike trains. The additional condition required is a moderate fluc-
tuation of the timings of the pre- or post-synaptic spikes. Similar to the real
neural systems, there are many possible sources of such fluctuations, such as
unreliable synapses, noise in the input spike trains, etc. It is well known that
most real neurons receive input spike trains containing irregular spike timings
and a level of noise (Softky and Koch, 1993; Shadlen and Newsome, 1994). Such
a mechanism is employed in the experiments presented later in this article.

3.2 Plasticity in the synapses attached to the soma

The function performed by the synapses attached to the soma is relatively sim-
ple. They are used mainly for lateral connections between competitive or coop-
erative neurons. These synapses are trained using a simpler rule implementing
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an asymmetric spike-timing dependent learning window with length tlwinms.
Here the change in the synaptic strength depends only on the normalized rela-
tive timing between the pre- and post-synaptic spikes: ∆ti = tprei −t

post
i

tlwin
. After a

pre- or post-synaptic spike, the weight change for the synapses is calculated as:

∆wi =
{
A∆ti exp(−∆ti) if ∆ti > 0,
−AB∆ti exp(−∆ti) if ∆ti < 0. (10)

and the weights are changed according to:

wnewi =
{
woldi + ηs∆wi(1− woldi ) if ∆wi > 0,
woldi + ηs∆wiwoldi if ∆wi < 0. (11)
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Figure 5: The asymmetric learning window for synapses attached to the soma.
A = e,B = 0.6 and tlwin = 100ms.

Figure 5 shows the asymmetric weight change learning window described by
the above equations. If the pre-synaptic spike precedes the post-synaptic spike,
the weights are increased. Respectively, if the pre-synaptic spike arrives after
the post-synaptic one, the weights are reduced.
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4 Experiments

There are many different systems in the brain where recognition of temporal
information encoded in incoming spike trains is required. For instance, the
spike trains generated in the auditory system are used in the higher cortical
auditory regions for the identification of phonemes and words (Hopfield and
Brody, 2000). Here, we will present some experiments where we used the new
model of a neuron with dynamic synapses and active dendrites to recognize
words based on input of phoneme sequences.

4.1 Short words with repeating phonemes

One aim in the first experiment is to explore how the model will perform the
recognition of words which have the same phonemes, but in a different order,
as well as words with repeating phonemes. In order to test this, we developed
a neural network for the recognition of the words “bat”, “tab”, “babat” and
“tatab”. Each word is represented as a sequence of spike trains generated by
input neurons representing the phonemes “æ”, “æ2”, “b”, “b2”, “t” and “t2”.
The active neurons and the order of the spike trains defines the word in the
input. Here we assume that neurons representing the same phoneme (e.g. “æ”)
will fire with different probability. Consequently, there are different neurons
(e.g. for “æ”, “æ2”, etc.) responding to the first, second, etc. occurrences of
the same phoneme.

Figure 6 shows the architecture of the neural network. The six input units are
leaky integrate-and-fire neurons, and are driven by a decaying supra-threshold
current with random fluctuation within a predefined range. This random fluctu-
ation provides the noise in the timings of the single input spikes that is necessary
for the training of the neurons on the output layer (as discussed in section 3.1).
The decay rate of the current driving all input neurons is the same, so all input
spike trains have approximately the same mean firing rate. The role of the input
neurons is to represent the incoming word as a sequence of spike trains (see in-
put phonemes column in figure 8). The length of each phoneme (i.e. the delay
of the onset of the next phoneme in the word) is 100ms. In all experiments
presented in this article, the input spike trains were generated using neurons
with persistent dendrites which model the activity of a type of cortical neuron
presented in Egorov et al. (2002).

The output units are the leaky integrate-and-fire neurons with dynamic
synapses and active dendrites presented in section 2.1. Their task is to rec-
ognize the temporal pattern of input spike trains, i.e. to recognize the words
given their particular sequences of phonemes. As presented in the previous
sections these neurons have an effective mechanism and learning algorithm for
selective response of the temporal structure encoded in the onset times of a set of
spike trains. The output neurons form a four by four map with all to all lateral
connections via synapses attached to the soma. Each output neuron receives
connections from all phoneme input neurons via dynamic synapses attached to
different active dendrites.
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Figure 6: The network architecture for short word phoneme sequence recog-
nition. All word recognition neurons receive connections from the phoneme
neurons via dynamic synapses attached to active dendrites and are connected
to each other via synapses attached to the soma.
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After training (see appendix A.2 for the procedure and parameters used),
the network developed a well formed tonotopic word map of small clusters of
neurons recognizing each word (figure 7). Clusters representing words that
sound similar are close on the map. The neighborhood was determined by the
number of shared phonemes and partial phoneme sequence overlap between the
words.

Map 1 Map 2

Figure 7: Two typical map formations of the words “bat”, “tab”, “babat”
and “tatab”. Each neuron responds only to one particular word. Words that
sound similar, i.e. have similar phoneme sequences are recognized by neurons
in neighboring clusters.

Figure 8 shows the input and output spikes for the words “bat” [b æ t],
“tab” [t æ b] and “babat” [b æ b2 æ2 t]. In the former two words, the same
input neurons are active, but based on the temporal order of the spike trains, the
output neurons are able to distinguish between the different words. The word
“babat” contains all the phonemes of the word “bat”. However, the temporal
distribution of the phonemes is different (a longer delay between the æ and
t phonemes), and there are two additional phoneme inputs. As a result, the
neurons representing “bat” do not respond to this phoneme sequence. It is
recognized only by the sequence detectors for “babat”.

There are different sources and types of noise in the biological neural systems.
Although the neurons in our model were trained only with noise in the timing of
the single spikes within the train, the model exhibits robust behavior for several
different types of noise. The output neurons have reliable responses when the
onset times of the input spike trains vary by up to 40ms. Further, the output
neurons reliably detected temporal sequences in the presence of relatively high
levels of noise from the non-active inputs. Figure 9 shows such examples for
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Figure 8: Recognizing the words “bat” (top), “tab” (middle) and “babat” (bot-
tom). Left column: The input spike trains for the phonemes representing the
three words. Middle column: Output spikes of the small clusters of neurons
recognizing the particular word. Each plot line represents the activity of the
16 neurons from map 1 on figure 7. Neuron number 0 is the bottom left unit
from the map, neuron 3 is the bottom right unit and neuron 15 is the top right
unit. Right column: Total membrane potentials at the soma for three neurons
recognizing the three words. Neuron 13 responds only to the word “bat”, neu-
ron 10 responds only to the word “tab” and neuron 0 responds only to the word
“babat”.
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the words “tatab” and “bat”. The words are correctly recognized even in the
presence of additional noise in the onset times and random spikes from the
non-active phonemes.
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Figure 9: Processing “tatab” with noise in the onset times(up to 40%); and
“bat” with noise in the onset times and lower frequency random spikes from the
non-active phonemes.

4.2 Recognizing language instructions to a robot

Increasingly more attention in intelligent robotics has been paid to robots that
are capable of interacting with people, responding to voice commands or de-
riving an internal representation from a language description (Wermter et al.,
2003; Lauria et al., 2002; Yoshizaki et al., 2002; Kyriacou et al., 2002; Bugmann
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et al., 2001; Crangle, 1997). Such robots exhibit learning and acquire adap-
tive behavior which cannot be completely preprogrammed in advance. Natural
language can be used for the description of relatively specific rules or action
sequences, and could be the primary means of communication between the user
(sometimes computer-language-naive) and the robot.

In this section we present part of a system which is being implemented for
language instructions to a robot. The goal of the system is to instruct a robot for
navigation and grasping tasks. The language corpus consists of words forming
instruction phrases like: “Bot go”, “Bot stop”, “Bot turn left” or “Bot lift”. The
words used in this experiment, together with their phonemic representation are
shown in table 1. The overall architecture is shown in figure 10. Phoneme
sequences are used as an input to the neural network module which recognizes
the words. The input phoneme sequences can be generated from real speech
using a speech-to-phoneme recognition module, e.g. parts of Sphinx (Lee et al.,
1990). The output words as a sequence are sent to the robot, and the formed
instruction interpretation is executed.

Figure 10: Robot’s language instruction system.

The architecture of the neural network module is shown in figure 11. The
input layer contains one neuron for each phoneme. As in the previous ex-
periment, the input units are integrate-and-fire neurons driven by a decaying
supra-threshold current injection containing noise in the amplitude. The out-
put units on the next layer are integrate-and-fire neurons with dynamic synapses
and active dendrites. They are organized in an eight by eight map with all-to-
all lateral connections via synapses attached to the soma. Each output neuron
receives connections from all phoneme neurons via dynamic synapses attached
to different active dendrites.

The network was trained using correct, noise-free phoneme sequences as
produced by a speech-to-phonemes recognition module. Based on the observed
average length of the phonemes produced by this module, the length of each
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Table 1: Phoneme sequences of the words.

word phoneme sequence
GO [g ow]
BOT [b ao t]
TURN [t er n]
RIGHT [r ay t]
LEFT [l eh f t]
LIFT [l ih f t]
DROP [d r ao p]
STOP [s t ao p]

Figure 11: Network architecture and self-organized map of the word recognition
neurons after training.
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consonant was set to 50ms and each vowel to 100ms. As in the previous exper-
iment, the length of a phoneme determines the delay of the onset time of the
spike train representing the next phoneme in the word.

After training (see section A.2 for details on the training procedure and
parameters) each of the output neurons adapted towards recognizing a partic-
ular phoneme sequence, i.e. a particular word. The word recognition neurons
formed small localized clusters of units recognizing the same word (see figure
11). Typically a subset of the neurons within a cluster responded depending on
the input noise level. Altogether, the neurons within a cluster covered a range of
noise-dependent fluctuations in the input phoneme sequence for the particular
word. Furthermore, the clusters were organized in a tonotopic word map, i.e.
neurons recognizing words that have similar sounds, such as “drop” and “stop”
or “left” and “lift”, occupied neighboring clusters.

There are three different types of noise produced by a phoneme recognition
module: (1) the lengths of the same phonemes are not exactly the same in
each utterance; (2) in most sequences there are additional phonemes which do
not belong to the word being represented; and (3) in some sequences there are
missing phonemes. The network was tested on all three types of noise.

Figure 12 shows the processing of the words “drop”[draop] and “stop” [staop]
with noise in the phoneme lengths and additional phonemes being activated.
The actual network inputs are [draof lp] and [stf aolp] respectively, with noise
in the onset time of the phoneme spike trains. The network responds reliably if
some extra phonemes are added to the input. Due to the weight decay, a neuron
which recognizes a particular word has synapses with a significant strength only
for phoneme inputs that belong to that word. The synaptic strength for input
phonemes which do not belong to the word is negligible. As a result an additional
input phoneme does not have a significant influence on the selective response
of the neuron recognizing its word. However, if the phonemes, which are added
as noise, constitute a valid phoneme sequence, it might be recognized by other
neurons. Furthermore, the output neurons have been found to respond reliably
if the phoneme lengths varied by up to 40%.

If however, the input phoneme sequence representing a particular word has
missing phonemes, it will most likely not be detected as a valid sequence and
the neurons recognizing that word will not respond. Figure 12 shows one such
example for the word “right” [r ay t], where the “ay” phoneme has been substi-
tuted with “ih”. No output neuron from the network responded to this phoneme
sequence. Although the neurons which recognize the word “right” are still sig-
nificantly activated, the input stimulus can not trigger a post-synaptic spike.

Figure 13 shows the processing of the instruction “Bot turn left”. Each of
the words has been recognized by a particular set of neurons. The input is a
set of three noisy phoneme sequences [b ao t], [t er n] and [l eh f t]. Since the
model was trained to perform recognition only on a single word level, there is a
delay between the consecutive words. The output is a sequence of active clusters
representing each of the three words. The recognized words will be sent to the
robot which will execute the given instruction.
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Figure 12: Processing the words “drop”, “stop”, and “right”. Top and middle:
Small clusters of neurons responding to noisy input for the words “drop” and
“stop”. Bottom: No output neurons from the network responded to the [r ih t]
sequence. Although the neurons recognizing the word “right” [r ay t] are still
significantly potentiated, the input stimulus is not sufficient to trigger a post-
synaptic spike.
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Figure 13: Processing the words “Bot turn left”.

5 Discussion and Conclusion

We presented a novel model of a spiking neuron for detecting the temporal struc-
ture of spike trains and applied it in a network of spiking neurons for recognizing
words for robot language instructions. The neuron exploits the dynamics of the
synapse and the active properties of the dendrites in order to implement an
efficient “delay” mechanism which will maximize its response to a particular
input sequence. The spatio-temporal structure of the “delay” mechanism is en-
coded in the synaptic strengths. We have developed and presented a synaptic
plasticity rule which is capable of efficiently tuning the neuron. After training,
the neuron is sensitive to a specific temporal structure of the input spikes, and
is selectively responsive to stimulus with spatio-temporal patterns that matches
its “delay” structure.

The synaptic plasticity rules employed in this work follows recent neuro-
physiological experimental results (reviewed in Bi and Poo (2001); Kepecs et al.
(2002); Roberts and Bell (2002)). The implementation of plasticity of the
synapses attached to the soma, section 3.2, is a direct approximation of the
asymmetric learning window as a function of the relative timing of the pre-
and post-synaptic spikes, as presented in several neuro-physiological studies
(Markram et al., 1997; Bi and Poo, 1998; Feldman, 2000). In general, if the
pre-synaptic spike precedes the post-synaptic spike, the weights are increased,
and respectively, if the pre-synaptic spike arrives after the post-synaptic one,
the weights are reduced. The magnitude of the change depends on the time
difference between the two spikes.

The plasticity rule for the synapses attached to the active dendrites is some-
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what more complicated. Studies presented in Nishiyama et al. (2000) have
revealed a second negative part of the learning window. Negative changes in
the synaptic strength have been observed if the pre-synaptic spike precedes the
post-synaptic spike by a relatively long time. Nishiyama and colleagues dis-
cussed possible causes for the appearance of this so called “paradoxical zone” of
the learning window as the different spatio-temporal pattern of calcium eleva-
tion or the activation of local inhibitory circuits. A possible cellular mechanism
for this part of the learning window has been discussed in Bi (2002). The synap-
tic plasticity rule presented in section 3.1 implements and takes advantage of
the “paradoxical” part of the learning window. Our work shows that in fact,
if the active properties of the dendrites are taken into account, this part of the
learning window has a possible computational interpretation and plays a crit-
ical role in the synaptic plasticity process. It allows the neuron to adapt and
maximize its response to a specific spatio-temporal pattern of incoming action
potentials.

Furthermore, the new model of spiking neuron was tested in the development
of a self-organizing tonotopic word map of cooperative and competitive neurons.
We have achieved a self-organization of the neurons representing the words
which is based on the phonetic properties of the words, i.e. the spatio-temporal
structure of the input stimuli. The same word is recognized by a small cluster
of neighboring neurons, and the clusters representing words that sound similar
are close on the map. This is a possible intermediate representation and link
between the frequency-based tonotopic maps in the auditory cortex (Kaas and
Hackett, 2000) and the distributed semantic-based representations of words in
the brain (Pulvermüller, 1999).

The performance of the model was tested under different regimes and levels
of noise. The results suggest that it can be successfully applied in processing
of real data. An example of such application is the presented network for word
recognition as part of a robot language instruction system. Each word was rep-
resented as noisy temporal sequence of phonemes generated as an intermediate
output by a speech-to-phoneme recognition module. The output neurons were
able to learn the spatio-temporal structure of the phonemic representation and
recognize words from the input under noisy conditions.

Further experiments and applications of the model will involve generating the
input sequence directly from the cochleagrams of the real speech input (Slaney
and Lyon, 1993; Wermter and Panchev, 2002), instead of phoneme representa-
tions, and thereby achieving a model of neural speech recognition with spiking
neurons. The results from the experiments presented here, i.e. the output of
the self-organizing map, will be used as an input for the future development of
a language processing network of spiking neurons for representation of whole
phrases and sentences (Pulvermüller, 2002). As part of this, the model of a
spiking neuron with dynamic synapses and active dendrites is also being fur-
ther developed towards achieving more complex neural structures such as cell
assemblies and synfire chains.
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A Appendix: Methods

This appendix gives details on the parameters and training procedures used in
the experiments presented in the article.

A.1 Active dendrites

The time constant τdi and the resistance Rdi of the active dendrites are defined
as functions of Is∗i which is the maximum of Isi (t) since the last pre-synaptic
spike. Following equation 1, for a single spike arriving at the synapse, Is∗i =
wijρ(∆t(f))/taus (see also figure 14). τdi is defined as:

τdi , τ
d
i (Is∗i ) = τm − τm − τ s

1 + e−(τsIs∗i + 1
τs )

(12)

For low synaptic input, this leads to values of τdi approaching the time constant
of the soma τm, and for high inputs τdi approaches the time constant of the
synapse τ s which is usually much faster than τm.

Furthermore, Rdi is defined such that for a single spike at a synapse with
strength wij , the value of the maximum of the membrane potential at the soma
is directly proportional to the neuron’s firing threshold θ , i.e. equals wijθ.
Such a choice for Rdi facilitates the control over the neuron in simulation and
improves its adaptation during learning. Thus, Rdi yields the equation:

Rdi , R
d
i (τ

d
i ) , Rdi (I

s
i∗) =

θ

BE
(13)

with A =
1

τ s − τdi
, B = A

Rm

τm
, C =

τmτ s

τm − τ s
, D =

τmτdi
τm − τdi

and (14)

E = min

(
−Ce− t

τs +De
− t

τd
i + (C −D)e−

t
τm

)
, t > 0 (15)

A.2 Running parameters and training procedure

The following parameters were used for the simulations presented in this article:
For all neurons: τ s = 2ms, τm = 60ms and Rm = 15.
For the dynamic synapse (equation 3): σ = 0.3 and µ = 0.18. The normal-

ized time ∆t(f) between the current and the earliest spikes in Fj is: ∆t(f) =
tcurrent−tfirst

t(f) , with t(f) = 1sec in the experiment presented in section 4.1 and
t(f) = 0.4sec in the experiment presented in section 4.2.
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Figure 14: τd and Rd plotted as a function of the weight of the synapse at which
a single spike has arrived (with τ s = 2ms and τm = 60ms).

The following parameters were found to be optimal for the training of the
neurons:

For the synapses attached to active dendrites: ε = 0.03, η = 0.03 and
ηdecay = 0.001.

For the synapses attached to the soma: A = 0.005e, B = 0.6, taul = 40ms,
tlwin = 100ms and ηs = 0.03.

The network presented in section 4.1 was trained for 10000 epochs. During
one epoch correct noise-free sequences were presented once for each of the four
words. After each epoch, the weights of the lateral connections were decreased
by -0.00001. In order to examine to exact responsiveness of each neuron to a
particular spatio-temporal pattern, the lateral connections were removed during
the tests.

The network presented in section 4.2 was trained for 15000 epochs. During
one epoch correct noise-free sequences were presented for each of the eight words.
Within each epoch of the first 3000 epochs, the shorter words were represented
more frequently. For the remaining 12000 epochs, each word was represented
once within an epoch. After each epoch, the weight of the lateral connections
were decreased by -0.00001.
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