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Towards multimodal neural robot learning
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Abstract

Learning by multimodal observation of vision and language offers a potentially powerful paradigm for robot learning.
Recent experiments have shown that ‘mirror’ neurons are activated when an action is being performed, perceived, or verbally
referred to. Different input modalities are processed by distributed cortical neuron ensembles for leg, arm and head actions. In
this overview paper we consider this evidence from mirror neurons by integrating motor, vision and language representations
in a learning robot.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

There has been some initial research in learn-
ing by language instruction or demonstration[1–3],
but this has only played a minor role in intelligent
robotics so far. In response to this, our approach[6,7]
studies robot learning based on multimodal learning
and topological memory organisation. In this pa-
per we show how representations of demonstrating
motor actions and language instructions can be inte-
grated and outline an architecture for the integration
of motor actions, vision and language representa-
tions.
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2. Associating multiple modalities

First we provide a general outline of the overall
architecture. In the network ofFig. 1 mirror neuron
properties[5] evolve among some of the neurons in
the top layer. They carry an internal representation�r
of all the inputs below. The inputs are from multiple
modalities including higher level representations.

The vector�l contains language input information.�pv

contains the visual perception which includes the iden-
tity and perceived location of a target to be grasped.�m
are the motor unit activations including wheels, grip-
per and pan-tilt camera.�ms denotes motor sensory
unit activations.�i are other internal states such as the
goal-related value function of the critic used in rein-
forcement learning.

Thick lines with arrow heads denote the weights.
The vertical connections are trained with a sparse
coding unsupervised learning scheme similar to the
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Fig. 1. The overall associative architecture.

Helmholtz machine which we describe for image
processing later. The inputs are collected from real
robotic actions (after exercising with simulated data)
which are performed interactively in the environment.
The data is only instantaneous information, i.e. the
whole action sequence is not known. Therefore, these
neurons do not necessarily fire over a sustained period
in time as do mirror neurons. However, since�r is a dis-
tributed code, some of the units may specialise to code
for longer sequences. The horizontal recurrent con-
nections (depicted as open circle) are trained as an au-
toassociator neural network. They are used in a neural
activation relaxation procedure which removes noise
from the representation�r and may also encourage
prolonged firing. As a possible extension, associator
recurrent connections may also feed back to the input.
This would be interesting for the cortical feed back
to the motor units, because of implications for motor
control.

3. Associating motor actions with action verbs

Two concrete examples of this overall architecture
have been demonstrated. The MIrror-neuron Robot
Agent (MIRA) (seeFig. 2) robot was set up to per-
form various actions that are associated with the leg,
head or hand. Sensor readings were taken while per-
forming a sequence of sub-actions that corresponds to
these actions.

First, we associated internal representations of
demonstrated actions with a word description. The
system accepted two kinds of input: words using a
representation of phonemes and demonstrated actions
based on sensor readings to represent the semantic
features of the action.

Fig. 2. The MIRA recognising and tracking an orange with its
camera.

Fig. 3. The self-organising associative architecture.

As can be seen inFig. 3 the associative architec-
ture uses self-organising networks to associate actions
with the appropriate body part and then associates the
word form with the action. By associating the action
representation with the word form the robot can then
produce the action word when receiving the corre-
sponding action input, and vice versa.

Fig. 4shows an example of self-organising network
with 12 × 12 units. Once this network architecture
was trained there was a clear clustering into the three
body parts (seeFig. 4). The hand action words were
at the bottom of the output layers in the hand body
part region, with the head actions slightly below and
to the right of the leg region.

4. Associating vision and motor representations

The second concrete example is an associator neu-
ral network to localise a recognised object within the
visual field. This is an essential basic skill for robotic
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Fig. 4. The percentages for the test samples for the body parts that
have the highest activation for each unit on a network (black – hand,
white – head, grey – leg).

learning by demonstration which we solve by a neu-
ron reinforcement approach. The model, depicted in
Fig. 5, extends the use of lateral associator connec-
tions within a single cortical area to their use between
different areas. The first cortical area is the visual area
V1 which encodes an internal ‘what’ representation
of images. The weights connecting it to the image are
trained by a sparse coding Helmholtz machine. We
extend the lateral connections to also span a second
cortical area, the ‘where’ area which is laterally con-
nected to the simulated V1. The lateral weights are
trained to associate the V1 representation of the image
to the location of an object of interest which is given
on the ‘where’ area.

Fig. 6 shows the network activities after initialisa-
tion with sample stimuli of an orange and relaxation to
a steady state. The relaxation procedure which spans
the ‘what’ and the ‘where’ area then completes the

Fig. 5. Model architecture. The hidden representation ‘what’ of
the image including the target object is associated to the location
‘where’ of the target which is relevant for motor action.

Fig. 6. Example representations on the image, ‘what’ and ‘where’
areas. Theimage is originally in colour, where in the upper row,
the orange fruit target is artificially generated. The networks of
the upper and lower row were trained and activated with different
parameters. For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this
article.

pattern by displaying the location of the object of in-
terest as a Gaussian activity hill.

Once that an object of interest appears in the visual
field, it is first necessary to localise its position within
the visual field. Then, usually the centre of sight is
moved towards it, and a grasping movement prototype
will be activated.

We connected the ‘where’ area to motor neuron’s
output which control the robot camera’s pan-tilt mo-
tors to centre the orange object. These move the
camera so that the orange fruit is located in the cen-
tre of the ‘where’ area (Figs. 5 and 6). Fig. 2 shows
the MIRA robot performing the tracking with an
orange.

Additionally, using reinforcement learning, we have
successfully implemented the task of robot ‘docking’
at a table so that it can grasp an object which lies at the
border of the table with its grippers. The input to the
reinforcement-trained network is the perceived target
location (from the ‘where’ area) and the robot rotation
angle of the robot relative to the table. Outputs are the
four motor units and a critic unit which has a positive
value if the target is perceived at the middle of the
lower edge of the visual field and the rotation angle
is zero. The weights to the value function unit and
those to the motor units develop concurrently such that
an optimal strategy towards reaching the target will
be performed. The data delivered during these actions
will be used for the training and verification of mirror
neurons.
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5. Conclusion

We have developed neural solutions for tasks that
need to be solved by a robot that learns by demon-
stration and instruction. The robot sensor inputs to
the modular, self-organising network were partitioned
in a way that they match the three body areas ‘leg’,
‘head’ and ‘hand’. This network realises aspects of
modularity, because different types of semantic infor-
mation – head, arm and leg-related information – are
projected to different parts of the network and rep-
resentational space. At the same time, the network
processes perceptions, actions and words by dis-
tributed neural units that have been linked together
in a learning process. The network can in principle
realise the findings of Pulvermüller by identifying the
semantic features from the actual sensor readings for
the individual action verb classes that were specific
to the appropriate body part[4].

A recurrent associator network with distributed cod-
ing was developed for the visually related part of the
task. Such associator networks form the neural basis
for multimodal convergence and at the same time can
supply a distributed representation across modalities
as has been proposed for linguistic structures. Mul-
timodal representations furthermore allow for mirror
neuron-like response properties which emerge in our
bio-mimetic mirror neuron-based robot.

We think that visual observation and language in-
structions are complementary forms of guiding robots
in a natural manner to perform and link their perfor-
mance to their own underlying actions. An associative
neural organisation of the internal memory may there-
fore be advantageous for a robot’s learning of visually
described actions or verbally instructed actions.
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