
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
E-mail addr

stefan.wermter@

URL: http:/
Neurocomputing 70 (2007) 2552–2560

www.elsevier.com/locate/neucom
A self-organizing map of sigma–pi units

Cornelius Webera,�, Stefan Wermterb

aFrankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany
bHybrid Intelligent Systems, School of Computing and Technology, University of Sunderland, UK

Received 28 September 2005; received in revised form 3 April 2006; accepted 10 May 2006

Communicated by E.W. Lang

Available online 20 October 2006
Abstract

By frame of reference transformations, an input variable in one coordinate system is transformed into an output variable in a different

coordinate system depending on another input variable. If the variables are represented as neural population codes, then a sigma–pi

network is a natural way of coding this transformation. By multiplying two inputs it detects coactivations of input units, and by summing

over the multiplied inputs, one output unit can respond invariantly to different combinations of coactivated input units. Here, we present

a sigma–pi network and a learning algorithm by which the output representation self-organizes to form a topographic map. This network

solves the frame of reference transformation problem by unsupervised learning.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Frame of reference transformations; Population coding; Invariances
The sensorimotor control by the human body is subject
to the complexity of the body geometry. Information
extracted from the world by sensors like vision needs to
be transformed into a motor-relevant representation.
The position of an object as it is perceived by vision
on the retina, for example, cannot be directly used to
control the arm and the hand for grasping. Instead, the
direction in which the head and the eyes are facing needs to
be considered, in order to infer an object’s position in a
body-centered frame of reference which is more suitable for
the control of the hand.

In mammals, the posterior parietal cortex (PPC), which
lies at a strategic position between the visual and motor
cortex, represents objects in different frames of reference.
‘‘The encoding of information referenced to the retina (eye-
centered) but modulated by eyeposition, called a gain field
representation, has proven to be very common throughout
parietal and occipital cortex’’ [14]. PPC neurons have
mostly multimodal responses and allow the PPC to carry
e front matter r 2006 Elsevier B.V. All rights reserved.

ucom.2006.05.014

ing author. Tel.: +4969 79847536; fax: +49 69 79847611.

esses: c.weber@fias.uni-frankfurt.de (C. Weber),

sunderland.ac.uk (S. Wermter).

/www.his.sunderland.ac.uk.
out computations which transform the location of targets
from one frame of reference to another [4,5]. For example,
if we progress along the adjacent cortical areas LIP, VIP
and area 5 of the macaque, neurons encode locations
retinotopically in eye-centered coordinates in the LIP, in
eye-and also in head-centered coordinates in the VIP [7]
and in hand-centered coordinates in area 5 (in addition to
eye-centered representations) [3].

Modeling frame of reference transformations: Neural
network models of such frame of reference transformations
code the transformed variables by population codes, in
order to take into account that in the brain usually many
neurons with varying properties respond to a given
stimulus. Fig. 1 depicts a situation where three variables
mx, my and mz are each coded on an array of neurons as
population vectors x, y and z, respectively (bold font
denotes vector). In the population vectors, neurons are
activated under a Gaussian-shaped hill of activation where
the position of the hill denotes the variable to be coded. In
order to code a two-dimensional vector one would take a
two-dimensional sheet of neurons.
The task of the frame of reference transformation is, if mx

and my are given, to infer mz. For example, mx may be the
location, in the horizontal plane, of an object of interest as

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2006.05.014
mailto:c.weber@fias.uni-frankfurt.de
mailto:stefan.wermter@sunderland.ac.uk
http://www.his.sunderland.ac.uk


ARTICLE IN PRESS

00 0μy=0.9 μz=1.4μx=0.5

yx

0

1

1 1 2

z

Fig. 1. Taking the sum of two variables using population codes. Below: the three variables and their relation mx þ my ¼ mz. The extended range of the

coordinate system for mz accounts for its larger range. Above: the neural population codes x, y and z. Each variable is represented as a neural activation

pattern: the dots in the Gaussian-shaped curves represent the activations of the underlying neurons (open circles). The position m of a hill of neural

activation carries the information about the corresponding variable.

C. Weber, S. Wermter / Neurocomputing 70 (2007) 2552–2560 2553
perceived visually on the retina, my may be the horizontal
position of the eyes and mz may then be the head-centered
horizontal location of the object. In this case we have the
linear relation mz ¼ mx þ my. This transformation becomes
non-linear between the neural population codes for mx, my

and mz, as we can see in Fig. 1: the neural activations x and
y themselves do not simply add up to z.

A standard way to achieve this transformation is first to
generate the outer product of x and y on a large additional
hidden layer of neurons. Then, a projection from this layer
to the output layer implements the function z ¼ f ðx; yÞ
[6,12,16]. The use of the hidden layer as the outer product
of input layers allows the hidden code and the connections
between the layers to be constructed using algebraic
transformations. Another approach has been to learn the
transformation by an auto-associative attractor network,
using the principle of pattern completion [17]. Without a
hidden layer, it exploits the simplicity of the data: the
position of the input activation hills causes a broad bias on
the output, and a fully recurrent connectivity confines the
output to a narrow hill of activation. This network was
trained supervised in the sense that the training data was
given to all three layers.

The question which we seek to answer is: How can a
frame of reference transformation, or rather the layer
representing the transformed variable, self-organize? In the
example above, if x codes for a retinal location of an
object, we may assume this to be represented topographi-
cally in some area of the visual system. Likewise, the
position of the eyes may be read from the eye muscles and
coded in y. However, the position of the object in a head-
centered frame of reference is not given by any sensors.
Instead, it can be inferred from x and y, so the
representation z should self-organize given only these two
inputs. For learning, we can exploit a characteristic
property of the data: z is more constant than x and y.
For example, if only the gaze direction is changed by a
mere eye-movement, then altered x̄ and ȳ still correspond
to a constant head-centered object position coded by z.

A topographic mapping between the head-centered
object position and its representation z would be desirable
for clarity. Furthermore, two PPC areas in humans
(possibly homologues of monkey LIP) have recently been
reported to represent delayed saccadic motor responses in a
topographic fashion, demonstrating that ‘‘topographic
maps tile the cortex continuously from V1 well into
PPC’’ [13].
Self-organization is important in the context of the
cerebral cortex, in order to explain structures in a multi-
tude of cortical areas. In the context of frame of reference
transformations, an adaptive scheme explains how sensory-
motor coordination can cope with adaptations during
evolution and ontogenesis. In contrary to previous work
that tackles frame of reference transformations via
geometrically constructed weights [6,12,16] or via super-
vised learning [17] we show for the first time that this
problem can be solved by unsupervised, or self-organized,
learning.

Related work on sigma-pi units: Sigma–pi units have
received early interest for explaining features of cortical
physiology more easily than classical units (e.g. [11]). As a
proposed task area, multiplicative attentional control can
dynamically route information from a region of interest
within the visual field to a higher area [1]. In our notation,
a visual signal x coding object features would be routed by
a control signal y conveying the retinal object position to a
signal z that retains the features of x but is centered on its
layer. Thereby, z is invariant to shifts of x, while y codes
for the shift.
Another idea for sigma–pi weights encoding invariances

can be realized if both inputs that are multiplied originate
from the same visual input layer [2]. Shift invariance is
expressed in a weight constraint which enforces a weight
connecting one pixel pair to be the same as a weight to
another pixel pair, if the constellations of both pairs are
similar except for a shift in position. While the information
about the original object position is lost, a welcome effect is
that this ‘‘weight sharing’’ constraint reduces the number
of network parameters. A biologically more acceptable way
of keeping the number of weights low is a framework that
lets so-called cluster weights grow according to need [15].
In another sigma–pi framework, two sets of activations

develop jointly from natural image patches as input [8].
One coding features (‘‘content’’) and the other coding
transformation (‘‘style’’). The number of hidden units to be
activated depends on the number of features present in the
model, which requires an iterative procedure to obtain the
hidden code, and a number of parameters to be set to
control the activation statistics. In contrast, our scenario of
estimating one position of an object of interest in a given
frame of reference allows the setting of the hidden code
to a Gaussian-shaped hill of activation where only its
position has to be estimated from the data. Therefore, we
can use a simple non-iterative algorithm based on the SOM



ARTICLE IN PRESS
C. Weber, S. Wermter / Neurocomputing 70 (2007) 2552–25602554
algorithm [9] which also allows for larger displacements of
the stimuli.

To our knowledge, this is the first formation of a self-
organizing map by sigma–pi units. Given the growing
interest in sigma–pi networks due to the increase of
computational power and given the popularity of SOMs
due to their simplicity, we expect frequent use of their
combination in the future.

Outline of the paper: In Section 1 we will present the
architecture and in Section 2 we will describe the learning
algorithm. Section 3 will show results of coordinate
transformations by the model, including a transformation
that is non-linear in the coded variables and transforma-
tions along two-dimensional maps. We also show that after
learning with blob-like activations, the network can also
convey more complex activation patterns. In Section 4 we
will discuss the results.

1. Model architecture

The network architecture is schematically displayed in
Fig. 2. With the number of units in the corresponding
layers being Nx, Ny and Nz, the total number of possible
sigma–pi connections fwijkg is Nx �Ny �Nz. This is in the
order of, but still less than, the case of the basis function
networks [6,12,16]. A unit i on the top layer is activated by
the input vectors x and y via the relation

ai ¼
X

j;k

wijkxjyk. (1)

Hence, a sigma–pi weight wijk is effective, if unit j of the
input vector x is coactivated with unit k of y, implementing
a logical AND relation. Fig. 2(b) demonstrates how such a
sigma–pi network can solve a relation like mx þ my ¼ mz.
We assume that one of the three input units is active in
each input area, and only the highlighted connections
of the top middle neuron are non-zero. In order to acti-
x

z

0

0
μx

y

a b

Fig. 2. (a) Model architecture. A filled circle represents a multiplication of th

summed up over the curved connections which have a weight assigned. Only th

units in the z layer are drawn. (b) Concept of a solution for the relation mz ¼
vate this unit the active units in x and y must correspond
to mx and my values which fulfill mx þ my ¼ 1. The unit
thus responds to a constant sum of the input variables
mx and my.

2. Algorithm

2.1. General idea

For simplicity of notation we will term the output
quantity the ‘‘sum location’’, envisaging the relation mx þ

my ¼ mz as a paramount example. For a given sum location
mz, there are many possible pairs of inputs ðmx; myÞ which
lead to the same sum. Therefore, learning is about
generating responses that are invariant to variations of
input pairs which belong to the same sum location.
In order to generate these invariances, we will supply the

learning algorithm with sets of input pairs that shall lead to
identical output activations. However, we must not
externally set the activations of the output units when
using a self-organizing algorithm. For conceptual clarity,
for each learning step such a set will consist of just two
pairs of inputs, ðmx;myÞ and ðm̄x; m̄yÞ. The first pair will be
used to obtain the map unit activations and thereby the
post-synaptic learning term. A winner-finding step and a
Gaussian-profile activation function implement lateral
competition and topographic relations between neighbor-
ing units. The second pair of inputs will be used in the pre-
synaptic learning term to form a difference between the
data and the weights to be trained.

2.2. Algorithm details

We choose an on-line learning algorithm where an
incremental weight change is made during presentation of
the data. The full procedure of one iteration is displayed in
the algorithm box, Fig. 3.
0

0

1
.5 0.5

1

μy

μz

1

2

e two inputs in the x and y layer. The results of the multiplications are

ree units are displayed in each area, and only the connections to one of the

mx þ my.



ARTICLE IN PRESS

Fig. 3. One iteration of the learning algorithm. See text for details.

y

y

x

x
1

μ x

1

μ y

0

0

Fig. 4. Examples of training data. Top row: x; bottom row, the corresponding y. The data are sorted so that mz ¼ mx þ my increases linearly from the

leftmost frame to the rightmost frame. Active units are dark. In each frame, the two pairs of data, ðx; yÞ and ðx̄; ȳÞ, are shown next to each other, both

belonging to the same mz. Scales on the right indicate the corresponding mx and my positions.

C. Weber, S. Wermter / Neurocomputing 70 (2007) 2552–2560 2555
Briefly, in Step 1, one sum location mz is defined,
corresponding to which in Steps 2 and 3, two different
pairs of input locations, ðmx;myÞ and ðm̄x; m̄yÞ, are chosen.
Both yield the same sum location mz, but are otherwise
independent. For example, this may be when looking at a
static object before and after a gaze change—then the
body-centered position, here mz remains constant. The
algorithm produces invariant representations, because in
Step 4, the two different input pairs are combined into a
single learning step. This combination is asymmetrical,
using a pre- and a post-synaptic term, while an explicit
output is not given to the algorithm. The algorithm
produces a topographic map representation, because the
post-synaptic term computed in Step 2(d) is a winner-take-
all-like activation with excitatory, Gaussian surround.

In detail, for each iteration, the sum location is chosen in
Step 1 and two different pairs of input locations are chosen
in Steps 2 and 3 of the algorithm. For the first pair, ðmx;myÞ,
the corresponding population codes ðx; yÞ are computed in
Step 2(a) as input to the network. Examples of input data
for the one-dimensional case are shown in Fig. 4.

The activations of the map units are given in Step 2(b) by
the sigma–pi input of the data (cf. Eq. (1)). In Step 2(c) the
winning unit is found by a weighted winner scheme, where
the map activations are convolved with the Gaussian:

ða � GÞðiÞ :¼
X

n

an � Gðji�nj;sÞ

where Gðji � nj;sÞ ¼N � e�ði�nÞ2=2s2 .

The factor N normalizes the sum of all map unit
activations to 1. The most active unit from the result of
this convolution is chosen as the winner. Directly taking
the winning unit from a leads to similar results, but the
weighted winner scheme, advised in [10], may lead to the
reduction of noise, in particular at boundaries.
Step 2(d) computes the network output z. A Gaussian

activation function Gðji �mj; sÞ centered around the
winning unit m implements competition as well as
neighborhood interaction. The interaction width s is the
same as in Step 2(c) and is decreased in Step 2(e) over the
course of learning.
Step 3 is similar to Step 2(a), but with another randomly

chosen pair of locations ðm̄x; m̄yÞ which also sums up to mz.
Step 4 is the incremental learning rule with learning rate �.
It is similar to a Hebbian rule in which the post-synaptic
activation zi is a Gaussian neighborhood function and the
pre-synaptic activations are given by the difference between
a data point and the weight vector.
Note that the sum location mz is only used to generate the

network input ðx; yÞ but not for the output z. The network’s
representation of the sum location which can be read
from the position of the activation hill zðx; yÞ is therefore
self-organized.

2.3. Data and network parameters

For the one-dimensional case, samples of the randomly
generated input data are shown in Fig. 4. One value of mz is
used to generate two independent pairs of positions,
ðmx; myÞ and ðm̄x; m̄yÞ. As indicated in Fig. 1, the value of
mz spans from 0 to 2, since mx and my both span from 0 to 1.
We set each of the two network input layers to a size of

15 units, as well as the output layer. The network weights



ARTICLE IN PRESS
C. Weber, S. Wermter / Neurocomputing 70 (2007) 2552–25602556
were initialized with random values in the interval
½�0:1; 0:1�. The 300,000 learning iterations (Fig. 3) were
made with a constant learning rate of � ¼ 0:01.

The width s of the neighborhood activation function
was reduced linearly from 8 units distance at the beginning
of learning to 3:5 units distance at iteration 33,000,
followed by a slower linear reduction to s ¼ 0 at iteration
200,000. Fig. 5 illustrates this reduction of s. A faster
decrease of s in the early part would possibly lead to a
disrupted global topography while a faster decrease in the
latter part may lead to topology defects at the borders. At
iteration 200,000, learning has essentially converged, but
we continued training until iteration 300,000 while no
relevant changes being visible, in order to make sure that
any effects of the neighborhood interaction when s40 are
eliminated.

For the two-dimensional case, we set all three network
layers to a size of 15� 15 units. This leads to a total of 156

¼ 11,390,625 connections. Near the end of training, we
have cut small weights which were smaller than 0.1 times
the maximum weight of a map unit. This led to about 5%
of all weights remaining, thus saving computation time and
memory, while not leading to a noticeable decrease in
performance. Two-dimensional data samples can be seen in
Fig. 9(a). In order to assist learning, also the width of the
Gaussian-shaped hills of the data was changed. During an
iteration

σ

0

3.5

8

0 33000 200000 300000

Fig. 5. Decay of the neighborhood interaction width s over training.

μx

μy

a

b

c

Fig. 6. Resulting weights of the one-dimensional transformation. Each squar

input axes are indicated on the leftmost unit in (a). Dark blue represents strong

the mz values were uniformly distributed. In (b), the data obeyed the non-linear

displayed with mz progressing linearly from the leftmost to the rightmost unit. (

which preferred small sum values.
initial learning period it was set large, sdata ¼ 1:5, to assist
the forming of global topography, then it was set to
sdata ¼ 0:5, as in Fig. 9(a), in order to produce a sharpened
mapping.
3. Results

3.1. One-dimensional maps

Simple case: Fig. 6 shows the resulting connections of
trained networks. In Fig. 6(a) the weights of each unit fall
onto a diagonal line in input space along which the sum
mx þ my is a constant. This constant decreases linearly from
left to right, indicating an ‘‘inverted’’ polarity of the map.
Different initial random values of the weights can lead to
another polarity. Test transformations of this network are
displayed in Fig. 7(b) in response to the input shown in Fig.
7(a). The map units activations a are also displayed (cf.
Step 2(b) of the algorithm, Fig. 3). These activations are
already well focused.

Non-linear relation: Fig. 6(b) shows weights which have
been trained on data that satisfy the non-linear relation
mx þ m2y ¼ mz. The plots below of the function my ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mz � mx

p
display a good match of the weight structure

with this function. The polarity is here such that mz

increases from left to right. Weights are weaker where this
function has a large (negative) slope. This is because the
density of the my occurrences in these areas was lower
during training, since mz was homogeneously sampled.
Corresponding map activations are shown in Fig. 7(c).
Note that single network inputs ðmx;myÞ are similar to

those used for the linear relation, since a pair which
satisfies mx þ m2y ¼ mz for some mz will also satisfy mx þ my ¼

m0z for another m0z and vice versa, as mx and my are taken
from the interval [0,1] and thus mz from [0,2]. The
difference to the linear relation lies in the choice of the
e denotes the connections of a sum neuron received from the inputs. The

connection weights. In (a), the data obeyed the relation mx þ my ¼ mz where

relation mx þ m2y ¼ mz. Below, the corresponding relation my ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mz � mx

p
is

c) is similar to (a), but the density of the mz was subject to a linear gradient



ARTICLE IN PRESS

x a winner a winner a winnerya b c d

Fig. 7. Test transformations. Each thin horizontal line shows a neural activation vector. (a) shows the x and y input vectors, where locations mx and my

have been varied systematically from top to bottom. (b)–(d) show output units activation vectors az and the corresponding winning units in response to the

x and y inputs in the corresponding lines in (a) for three different networks. In (b) the network of Fig. 6 (a) is used (linear relation), in (c) the network of

Fig. 6 (b) (non-linear relation) and in (d) the network of Fig. 6(c) is used (linear relation with inhomogeneous data density).

C. Weber, S. Wermter / Neurocomputing 70 (2007) 2552–2560 2557
second pair ðm̄x; m̄yÞ and therefore the relation between such
two pairs of inputs.

Non-constant data density: Fig. 6(c) shows weights which
have been trained on data that were distributed with a non-
constant density. The mz values were sampled under a
wedge-shaped distribution which favored small values.
Again the linear relation mx þ my ¼ mz was given. Accord-
ingly, the weights of individual units are as in Fig. 6(a), but
now more units represent the more frequent smaller values.
More precisely, the 10 rightmost units represent values
mzo1 and only the five leftmost units represent mz41.
A unit representing mx ¼ 1 and my ¼ 1 is more or less
missing. Accordingly, the mapping is less precise at the
leftmost units. This can also be seen below in Fig. 7(d)
where the last eight mx;my combinations activate the same
(leftmost) map unit. On the other hand, high-density
regions in data space are finer resolved by more units of the
network, so in the upper region of Fig. 7(d), more units are
recruited than in a corresponding region in Fig. 7(b).

3.2. Two-dimensional maps

Because of the practical importance, we have also
implemented transformations of two-dimensional codes.
Now lx, ly and lz are two-component vectors denoting a
point on a plane, and we have tested the vector summation
lx þ ly ¼ lz. Practically, lx may be a retinal-centered
position of a seen object and ly the eye position in terms of
horizontal and vertical angle of gaze direction. Then lz

would be the head-centered object position.
The high-dimensional network weights are difficult to
visualize. Topography cannot be displayed as usual for
SOM networks, by displaying the map units’ weights in the
input space, because of high-dimensional population
coding, and even the lower-dimensional ðlx;lyÞ space is a
product of two two-dimensional variables. The network
should (i) map inputs that correspond to different sum
locations to different regions on the map, (ii) map groups
of inputs which correspond to the same sum location to a
narrowly confined region on the map, and (iii) should
establish a topography between the map and the lz space.
These properties are demonstrated in Fig. 8 for the two-
dimensional variable transformation.
The large grid connects groups of map locations, where

the corresponding sum locations lz have been taken from a
square grid. For each sum location, 50 random input pairs
ðlx; lyÞ that lead to that sum location were given to the
network as input, and the map locations of maximum
activation were assessed. These 50 output locations were
joined by one line of a random color in order to display the
spread of the output. This process was repeated for 10� 10
different sum locations located on a grid in lz space. The
locations of maximum activation were determined by a
weighted winner scheme, by convolving the map activa-
tions a with a Gaussian (s ¼ 1), as in Step 2(c) of the
algorithm. This allowed a near continuous estimate of the
locations rather than being confined to the grid units if
simply the winning unit was taken. It can be seen that the
locations of maximum activation varied by a maximum
distance of around one grid unit separation for each sum



ARTICLE IN PRESS
C. Weber, S. Wermter / Neurocomputing 70 (2007) 2552–25602558
location, and that these 10� 10 different regions do not
overlap. Furthermore, the map establishes topography
with respect to the lz space, even though it has only
received input drawn from the ðlx;lyÞ space.

Some example transformations are demonstrated in
Fig. 9. In Fig. 9(a) the three input pairs represent locations
ðlx;lyÞ which lead to the same given sum lz. These data are
three of the 50 samples used to produce one of the 10� 10
connected groups in Fig. 8. Despite the large variation of
the inputs, the network correctly responds in an invariant
fashion to these transformations.

In Fig. 9(b) it can be seen that a more complex activation
pattern on one input layer will be reflected in the ‘‘inner
1

5

10

15

1 5 10 15

Fig. 8. A plot on the precision and the topography of the two-dimensional

mapping. The 10� 10 sum locations were chosen on a square grid in lz

space. For each sum location, 50 pairs of ðlx;lyÞ were sampled randomly

given that they lead to the chosen sum. The 50 map locations of maximal

activation are connected by one line of a random color, for each given sum

location, to visualize the spread of the mapping. The centers of these

10� 10 groups are connected by a grid, to visualize the topographic

mapping. Labels on the axes delineate map unit space.

x aya b

Fig. 9. Test transformations of the two-dimensional network. Samples of input

part of the figure, and the corresponding network response a is shown in the th

that they belong to the same sum value lz. The network response a is almost

activation pattern is given to either input, a similar activation pattern emerges
activation’’ vector a on the map. This is because of the
linear relation of a to either input, given that the other
input is fixed. This linear relation could also be used to
convey the amplitudes of the signals. However, the output
is sensitive to noise in either input, since both inputs are
multiplied (bilinear relation) [15].
4. Discussion

Based on our recent approach of a neural frame of
reference transformation which was trained by supervised
learning [17], we intend to use the model presented in this
paper in the context of a neurally controlled robot docking
maneuver. The supervised system has been tested on a
robot simulator, and Fig. 10 explains the geometry on our
PeopleBot robot.
The overall neural system which controls a robot to pick

up an object will consist of three parts: (i) a visual system
provides the horizontal and vertical coordinates ðxh;xvÞ of
an object of interest within the camera image. (ii) This
location as well as the camera pan and tilt direction ðyp; ytÞ

is input to the sigma–pi SOM, which computes motor-
relevant coordinates that correlate with distance and angle
ðzd; zYÞ of the object in the robot-body-centered frame of
reference. (iii) With such a body-centered position as input,
a reinforcement-trained network directs the robot until the
object appears at a rewarded position at the robot’s
grippers.
The advantage of self-organized as opposed to super-

vised learning of the frame of reference transformation is
that the body-centered location need not be included in the
training data. Moreover, no geometrical calculations need
to be done as is the case with hard-wired methods. This is
important since the body-centered location is not given
directly in humans or monkeys and in a robot would need
costly measuring or retrieval by a simulator.
x ay

s x and y are given to the network as shown in the first two columns of each

ird columns. (a) Three random input pairs are given under the constraint

identical for all three input pairs. (b) When a more complex ‘‘L’’-shaped

on the sum area. It can be seen that the map polarity is rotated by 180�.



ARTICLE IN PRESS

Fig. 10. The PeopleBot robot shown can pan/tilt its camera, hence image

coordinates do not directly unveil an object’s location in real space.

Instead, a coordinate transformation has to be made in the following way.

Sensory inputs are the horizontal and vertical coordinates ðxh;xvÞ of an

object of interest within the camera image, and the pan and tilt direction

ðyp; ytÞ of the robot camera. The coordinate transformation must compute

object coordinates which can be used to pick up the object. These can be

the distance and angle ðzd; zYÞ of the object to the robot in a fixed robot-

body-centered frame of reference. (In order to have a uniquely defined

mapping, here the assumption is made that the object is always at the same

elevation from the floor.)

C. Weber, S. Wermter / Neurocomputing 70 (2007) 2552–2560 2559
The self-organized map output is a suitable state space
representation for the reinforcement learner, because
different views of the object—by varying only the camera
pan/tilt angle—will yield a constant representation, as long
as the body-centered position of the target object remains
constant (in analogy to Fig. 9(a)). On the other hand,
varying the body-centered positions by moving the robot
will yield varying output activations, because the SOM
units strive to cover the whole input space. The reinforce-
ment learner will learn to reach the goal region of the state
space based on a reward that can be administered based on
external factors. The particular reinforcement algorithm
used earlier [18] takes advantage of topography, but does
not make assumptions on the state space such as a certain
polarity of the topographic map.

The use of sigma–pi neurons is in the nature of the given
problem, but may overestimate the computational cap-
abilities of cortical neurons. It is therefore worthwhile
attempting such a self-organized mapping with simpler,
connectionist neurons in future.

Novelty of contribution to SOMs: The Kohonen algo-
rithm has many applications such as data analysis and
visualization, classification of images and acoustic patterns,
financial analysis, traveling salesman problem, adaptive
robot control and the modeling of biological phenomena
[9]. The use of sigma–pi-type neuronal units with SOMs is
entirely novel and may spawn new areas of application for
SOMs. We have chosen these kinds of units in order to
account for the specific data structure which allows to
associate a given input in the x layer with a variety of
inputs in the y layer. Our data are relevant for an agent
acting in the physical environment such as a human or a
humanoid robot, but applicable data structure may exist
also in other domains. The learning algorithm has been
modified from the original Kohonen rule to account for
this qualitative increase in data complexity by pairing a
map activation vector with two data presentations instead
of just one as for the standard Kohonen learning rule. As a
consequence, for each input unit on the x layer, a complete
map to the y layer emerges from learning, and vice versa.
In summary, we have presented a novel self-organizing

map of sigma–pi neurons that performs frame of reference
transformations which are important to robotic applica-
tions as well as to the biological system.
Acknowledgments

This research is part of the MirrorBot project supported
by a EU, FET-IST programme, Grant IST-2001-35282,
coordinated by Prof. Wermter.
References

[1] C.H. Andersen, D.C. van Essen, B. Olshausen, Directed visual

attention and the dynamic control of information flow, in: L. Itti, G.

Rees, J. Tsotsos (Eds.), Encyclopedia of Visual Attention, Academic

Press, Elsevier, New York, Amserdam, 2004.

[2] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford

University Press, Oxford, 1995.

[3] C.A. Buneo, M.R. Jarvis, A.P. Batista, R.A. Andersen, Direct

visuomotor transformations for reaching, Nature 416 (2002) 632–636.

[4] Y.E. Cohen, R.A. Andersen, A common reference frame for

movement plans in the posterior parietal cortex, Nat. Rev. Neurosci.

3 (2002) 553–562.

[5] J.D. Crawford, W.P. Medendorp, J.J. Marotta, Spatial transforma-

tions for eye–hand coordination, J. Neurophysiol. 92 (2004) 10–19.

[6] S. Deneve, P.E. Latham, A. Pouget, Efficient computation and cue

integration with noisy population codes, Nat. Neurosci. 4 (8) (2001)

826–831.

[7] J.R. Duhamel, F. Bremmer, S. Benhamed, W. Graf, Spatial

invariance of visual receptive fields in parietal cortex neurons, Nature

389 (1997) 845–848.

[8] D.B. Grimes, R.P.N. Rao, Bilinear sparse coding for invariant vision,

Neural Comput. 17 (2005) 47–73.

[9] T. Kohonen, Self-Organizing Maps, Springer Series in Information

Sciences, third ed., vol. 30, Springer, Berlin, Heidelberg, New York,

2001.

[10] S.P. Luttrell, A bayesian analysis of self-organizing maps, Neural

Comput. 6 (1994) 767–794.

[11] B.W. Mel, C. Koch, Sigma–pi learning: on radial basis functions and

cortical associative learning, in: D.S. Touretzsky, (Ed.), Advances in

Neural Information Processing Systems, vol. 2, 1990, pp. 474–481.

[12] E. Sauser, A. Billard, Three dimensional frames of references

transformations using recurrent populations of neurons, Neurocom-

puting 64 (2005) 5–24.

[13] D. Schluppeck, P. Glimcher, D.J. Heeger, Topographic organiza-

tion for delayed saccades in human posterior parietal cortex,

J. Neurophysiol. 94 (2005) 1372–1384.

[14] L.H. Snyder, Coordinate transformations for eye and arm move-

ments in the brain, Curr. Opinion Neurobiol. 10 (2000) 747–754.

[15] M.W. Spratling, G.M. Hayes, Learning synaptic clusters for non-

linear dendritic processing, Neural Process Lett. 11 (2000) 17–27.

[16] A. van Rossum, A. Renart, Computation with populations codes in

layered networks of integrate-and-fire neurons, Neurocomputing

58–60 (2004) 265–270.



ARTICLE IN PRESS
C. Weber, S. Wermter / Neurocomputing 70 (2007) 2552–25602560
[17] C. Weber, D. Muse, W. Elshaw, S. Wermter, A camera-direction

dependent visual-motor coordinate transformation for a visually

guided neural robot, Knowl.-Based Syst. 19 (5) (2006) 348–355.

[18] C. Weber, S. Wermter, A. Zochios, Robot docking with neural vision

and reinforcement, Knowl.-Based Syst. 17 (2–4) (2004) 165–172.

Cornelius Weber is a Junior Fellow at the

Frankfurt Institute for Advanced Studies in

Germany since March 2006. He graduated in

physics in Bielefeld, Germany in 1995 and

received his PhD in computer science in Berlin

in 2000. Then he worked in the group of

Alexandre Pouget in Brain and Cognitive

Sciences, University of Rochester, USA. From

2002 to 2005 he worked in Hybrid Intelligent

Systems at the University of Sunderland, UK
throughout the EU-funded MirrorBot project. His research interests are in

computational neuroscience, focusing on visual and motor systems, and

robotic applications. In December 2003 he won the Machine Intelligence

Prize of the British Computer Society in Cambridge, demonstrating the

‘‘visually guided grasping robot MIRA’’. This publication is motivated by

extending the robot’s grasping range for such a scenario.

Stefan Wermter is professor in Intelligent Systems

at the University of Sunderland, UK and is the

Director of the Centre for Hybrid Intelligent

Systems. His research interests are in intelligent

systems, neural networks, cognitive neuroscience,

hybrid systems, language processing and learning

robots. He has a Diploma from the University of

Dortmund, an MSc from the University of

Massachusetts and a PhD and Higher Doctorate

(Habilitation) from the University of Hamburg,
all in computer science. He was a Research Scientist at ICSI, Berkeley in

1997 before accepting the Chair in Intelligent Systems at the University of

Sunderland in 1998.

Professor Wermter has written or edited five books and published about

150 articles on this research area, including books like ‘‘Hybrid

Connectionist Natural Language Processing’’ or ‘‘Connectionist, Statis-

tical, and Symbolic Approaches to Learning for Natural Language

Processing’’, ‘‘Hybrid Neural Systems’’, ‘‘Emergent Neural Computa-

tional Architectures based on Neuroscience’’ and ‘‘Biomimetic Neural

Learning for Intelligent Robots’’.

He is an Associate Editor of the journals ‘‘Connection Science’’, the

‘‘International Journal for Hybrid Intelligent Systems’’ and the ‘‘Knowl-

edge and Information Systems’’. He is on the editorial board of the

journals ‘‘Neural Networks’’, ‘‘Cognitive Systems Research’’, ‘‘Neural

Computing Surveys’’, ‘‘Neural Information Processing’’ and ‘‘Journal of

Computational Intelligence’’. Furthermore, he is leading the EU project

MirrorBot on biomimetic multimodal learning in a mirror neuron-based

robot and coordinates the EmerNet network on ‘‘emerging computational

neural architectures based on neuroscience’’.


	A self-organizing map of sigma-pi units
	Model architecture
	Algorithm
	General idea
	Algorithm details
	Data and network parameters

	Results
	One-dimensional maps
	Two-dimensional maps

	Discussion
	Acknowledgments
	References


