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Abstract

This paper attempts to identify certain neurobiological
constraints of natural language processing and exam-
ines the behavior of recurrent networks for the task
of classifying aphasic subjects. The specific question
posed here is: Can we train a neural network to dis-
tinguish between Broca aphasics, Wernicke aphasics
and a control group of normal subjects on the basis
of syntactic knowledge? This approach could aid dia-
gnosis/classification of potential language disorders in
the brain and it also addresses computational modeling
of language acquisition.

Introduction

Within the field of artificial neural networks, the bio-
logical models from which they were originally inspired
continue to offer a rich source of information for new de-
velopments. Conversely, computational models provide
the power of simulations, to support the understand-
ing of neurobiological processing systems (Hinton and
Shallice 1989). The study of language acquisition is an
especially important part of this framework, not just be-
cause of the importance of language-related neural net-
work applications, but also because it provides a very
good basis for studying the underlying biological mech-
anisms and constraints involved in the development of
high-order cognitive functionality.
As part of this, studies on aphasia are directed at

solving two major problems: the clinical treatment of
aphasia patients and the computational modeling of
language processing. In parallel with the psychological
and linguistic aspects, computational simulations con-
stitute a very important part of these studies - helping
to understand the representational and functional lan-
guage processes in the brain. There is a broad range of
open questions that need an adequate answer before we
reach any significant success in our computational mod-
els. These questions start from very precise biophysics
or biochemistry problems, pass through many interdis-
ciplinary ones within the Nature v Nurture debate (El-
man et al. 1996), localist and distributed representa-
tional/functional paradigms, language localization and
plasticity paradigms and finally many questions arise

in the application and theoretical levels of linguistics,
psychology and philosophy.
There are two major directions for studying the rep-

resentational and functional processing of language in
the brain. We can study the emergent language skills
of humans, e.g. innate vs. learned, or we can study
the effects of language impairments such as those due
to brain injury, e.g. aphasia.
Discussing the first direction, some authors attempt

to use new developments in neuroscience (and neuro-
modeling) to make sense of issues as development and
innateness, from a connectionist viewpoint (Elman et
al. 1996). They argue that there is a lot more in-
formation inherent in our environments, and that we
therefore require much less innate hardwiring at cortical
level than was previously thought. In their own words,
“Representational Nativism is rarely, if ever a tenable
position”, and “the last two decades of research on ver-
tebrate brain development perspective force us to con-
clude that innate specification of synaptic connectivity
at the cortical level is highly unlikely”.
Discussing the second direction, the study of human

language impairments also provides a source for our un-
derstanding of language. For quite a long time, the link
between left-hemisphere injury and language impair-
ments has been known and studied (Goodglass 1993).
Most of these studies supported the notion of strong
precoding of language processing in the brain. Until
recently, this notion was dominant, despite the well-
known facts such as lesion/symptom correlations ob-
served in adults do not appear to the same degree for
very young children with early brain injury (Lenneberg
1962). In general, without additional intervention, in-
fants with early damage on one side/part of the brain
usually go on to acquire abilities (language, vision, etc.)
that are considered within the normal range.
Within recently published work on language, cogni-

tion and communicative development in children with
focal brain injury (Elman et al. 1996; Bates et al. 1997;
Stiles et al. 1998; Bates et al. 1999), the favorite view-
point of brain organization for language has changed.
Many scientist have taken a new consensus position
between the historical extremes of equipotentiality (Len-
neberg 1962) and innate predetermination of the adult



pattern of brain organization for language (Stromswold
1995; Bates in press). However, there is still not a def-
inite understanding of the levels of innateness and plas-
ticity in the brain. Obviously, there is a lot of work
to be done, and any advances will have a great impact
for possible approaches of the many problems within
clinical treatment or computational modeling.
Studies on aphasia constitute a significant part of the

effort to understand the organization of the brain. The
approach suggested here uses a recurrent neural net-
work in order to classify interviewed subjects into nor-
mal or two different aphasic categories. The results
obtained up to this point might be used in the clin-
ical treatment of patients or classification of potential
aphasics, but the proposed research continues into the
direction of computational language modeling. Further-
more, the model is put into a perspective of integration
of symbolic/sub-symbolic approaches. We suggest the
use of neural preference Moore machines in order to
extract certain aspects of the behavior of the network
in deriving some neurobiological constraints of natural
language processing.
The paper is structured as follows: First we give an

outline about different forms of aphasia. Then we de-
scribe the recurrent neural network model and the spe-
cific aphasia corpus. Finally, we present detailed results
on classifying Broca, Wernicke and normal patients.

Aphasia in the Brain
Aphasia is an impairment of language, affecting the
production or comprehension of speech and the ability
to read or write. Aphasia is associated with injury to
the brain - most commonly as a result of a stroke, par-
ticularly in older individuals. It may also arise from
head trauma, from brain tumors, or from infections.
Aphasia may mainly affect a single aspect of language
use, such as the ability to retrieve the names of ob-
jects, the ability to put words together into sentences,
or the ability to read. More commonly, however, mul-
tiple aspects of communication are impaired. Generally
though, it is possible to recognize different types or pat-
terns of aphasia that correspond to the location of the
brain injury in the individual case. The two most com-
mon varieties of aphasia are:
Broca’s aphasia - This form of aphasia - also known

as “non-fluent aphasia” - is characterized by a reduced
and effortful quality of speech. Typically speech is lim-
ited to short utterances of less than four words and
with a limited range of vocabulary. Although the per-
son may often be able to understand the written and
spoken word relatively well, they have an inability to
form syntactically correct sentences, which limits both
their speech and their writing.
Wernicke’s aphasia - With this form of aphasia, the

disability appears to be more semantic than syntactic.
The person’s ability to comprehend the meaning of
words is chiefly impaired, while the ease with which
they produce syntactically well-formed sentences is
largely unaffected. For this reason, Wernicke’s aphasia

is often referred to as “fluent aphasia”. Sentences are
often long and syntactically quite good, but do not fol-
low on from each other and can contain meaningless
jargon.

Neural Network Models for Aphasia
For many prediction or classification tasks we need to
take into account the history of an input sequence in or-
der to provide “context” to our evaluation. One of the
earliest methods for representing time and sequences in
the processing of neural networks was to use a fixed se-
quence of inputs, presented to the network at the same
time. This is the so-called sliding window architecture
(Sejnowski and Rosenberg 1986). Each input unit (or
more typically a group of input units) is responsible for
processing one input in the sequence. Although this
type of network has been used to good effect, it has
some very basic limitations. Because the output units
are only influenced by inputs within the current win-
dow, any longer-term dependencies for inputs outside
of the current window are not taken into account by
the network. This type of network is also limited to se-
quences of a fixed length. This is obviously a problem
when processing variable length sentences.
One possible solution of the problem of giving a

network temporal memory of the past is to intro-
duce delays or feedback - Time Delay Neural Networks
(Haffner and Waibel 1990; Waibel et al. 1989). Al-
though this type of network is able to process variable-
sized sequences, the history or context is still of fixed
length. This means that the memory of the network is
typically short.
One very simple and yet powerful way to represent

longer term memory or context, is to use recurrent con-
nections. Recurrent neural networks implement delays
as cycles. In the simple neural network (Elman 1990),
the context layer units store hidden unit activations
from one time step, and then feed them back to the
hidden units on the next time step. The hidden units
thus recycle information over multiple time steps, and
in this way, are able to learn longer-term temporal de-
pendencies.
Another advantage of recurrent networks is that they

can, in theory, learn to extract the relevant context from
the input sequence. In contrast, the designer of a time
delay neural network must decide a priori which part
of the past input sequence should be used to predict
the next input. In theory, a recurrent network can be
used to learn arbitrarily long durations. In practice
however, it is very difficult to train a recurrent network
to learn long term dependencies using a gradient des-
cent based algorithm. Various algorithms have been
proposed that attempt to reduce this problem such as
the back-propagation through time algorithm (Rumel-
hart et al. 1986a; 1986b) and the Back-Propagation
for sequences (BPS) algorithm (Gori et al. 1989;
Mozer 1989).
As one possibility for relating principles of symbolic

computational representations and neural representa-



tions by means of preferences, we consider a so-called
neural preference Moore machine (Wermter 1999).

Definition 1 (Preference Moore Machine)
A preference Moore machine PM is a synchronous se-
quential machine, which is characterized by a 4-tuple
PM = (I,O, S, fp), with I, O and S non-empty sets
of inputs, outputs and states. fp : I × S → O × S is
the sequential preference mapping and contains the state
transition function fs and the output function fo. Here
I, O and S are n-, m- and l-dimensional preferences
with values from [0, 1]n, [0, 1]m and [0, 1]l, respectively.

A general version of a preference Moore machine is
shown to the left of figure 1. The preference Moore ma-
chine realizes a sequential preference mapping, which
uses the current state preference S and the input pref-
erence I to assign an output preference O and a new
state preference.

Preference mapping

Output O = [0,1]m

Input I  = [0,1]n

States

 S = [0,1]l
AAA
AAA

Output O

Input I

H

States
S

Figure 1: Neural preference Moore machine and its re-
lationship to a simple recurrent neural network

Simple recurrent networks (Elman 1990) or plausibil-
ity networks (Wermter 1995) have the potential to learn
a sequential preference mapping fp : I × S → O × S
automatically based on input and output examples (see
figure 1), while traditional Moore machines or Fuzzy-
Sequential-Functions (Santos 1973) use manual encod-
ings. Such a simple recurrent neural network consti-
tutes a neural preference Moore machine which gener-
ates a sequence of output preferences for a sequence of
input preferences. Here, internal state preferences are
used as local memory.
On the one hand, we can associate a neural preference

Moore machine in a preference space with its symbolic
interpretation. On the other hand, we can represent a
symbolic transducer in a neural representation. Using
the symbolic m-dimensional preferences and a corner
reference order, it is possible to interpret neural pref-
erences symbolically and to integrate symbolic prefer-
ences with neural preferences (Wermter 1999).

The CAP (Comparative Aphasia Project)
Corpus
The CAP corpus consists of 60 language transcripts
gathered from English, German, and Hungarian sub-

jects. We summarize a description of this corpus based
on the description in CHILDES database (Brinton and
Fujiki 1996; Fujiki et al. 1996). Transcripts in the
database for the English-speaking subjects are split into
three groups:
(1) Broca’s - characterized as non-fluent aphasics,

displaying an abnormal reduction in utterance length
and sentence complexity, with marked errors of omis-
sion and/or substitution in grammatical morphology.
(2) Wernicke’s - aphasics suffering from marked com-

prehension deficits, despite fluent or hyper-fluent speech
with an apparently normal melodic line; these patients
are expected to display serious word finding difficulties,
usually with semantic and/or phonological paraphasias
and occasional paragrammatisms.
(3) A control group of normal subjects.
All of the subjects whose test results are presented in

the database are right-handed and all had left lateral le-
sions. To exclude any ambiguity of the analysis, the pa-
tients with some additional non-aphasic diagnoses were
excluded.
The language transcripts have been collected using a

variation of the ”given-new” picture description task
of MacWhinney and Bates (MacWhinney and Bates
1978). Subjects were shown nine sets of three pictures
as described by the sentences in table 1.
The morpheme coding of the corpus patterns is

mapped, using the following syntactic descriptors: DET
(determiner), CONJ (conjunction), N (noun), N-PL
(plural form), PRO (pronoun), V (verb), V-PROG
(progressive), AUX (auxiliary verb), ADV (adverb),
PREP (preposition), ADJ (adjective), ADJ-N (nu-
meric). Each of these descriptors is coded as a binary
vector. Therefore, each sentence is presented as a se-
quence of descriptor vectors and a null vector to mark
the end of a sentence. In fact the subjects from Broca’s
and Wernicke’s groups do not give a simple sentence an-
swer for many of the pictures. In this case, the answers
are divided into subsequent sentences.
After each pattern is presented to the network, the

computed and desired output are compared. The ex-
pected outputs correspond to a three-dimensional vec-
tor with values of true or false for each of the three
subject classes. A particular value is set to one if the
sentence so far (i.e. from the first word up to and in-
cluding the current word) matches the beginning of any
sentence from that subject class.
The CHILDES database contains test results for five

subjects from each of the above three groups. The an-
swers of the first three persons in each group are taken
into the training set, and the answers from the other
two construct the test set. Table 2 presents the distri-
bution of examples in the two sets.

Experimental Results

A simple recurrent neural network is trained for 300
epochs. For one epoch, all the examples from the train-
ing set are presented, and the weights are adjusted after



Series Syntactic Description Sentences
1 DET N AUX V-PROG A bear/mouse/bunny is crying.
2 DET N AUX V-PROG A boy is running/swimming/skiing.
3 DET N AUX V-PROG DET N A monkey/squirrel/bunny is eating a banana.
4 DET N AUX V-PROG DET N A boy is kissing/hugging/kicking a dog.
5 DET N AUX V-PROG DET N A girl is eating an apple/cookie/ice-cream.
6 DET N V PREP DET N A dog is in/on/under a car.
7 DET N V PREP DET N A cat is on a table/bed/chair.
8 DET N AUX V-PROG DET N PREP DET N A lady is giving a present/truck/mouse to a girl.
9 DET N AUX V-PROG DET N PREP DET N A cat is giving a flower to a boy/bunny/dog.

Table 1: Picture series.

Subjects group Training set Test set
Normal 92 58
Wernicke’s 182 135
Broca’s 85 68

Table 2: Number of different sentences in the training
and test sets.

each word. After the training is completed, the net-
work is tested on the training and test sets. The results
presented in tables 3 and 4 suggest encouraging results.

Subject % of answers classified as
group Normal Wernicke’s Broca’s

Normal 63 29 8
Wernicke’s 5 90 5
Broca’s 9 18 72

Table 3: Results from the training set.

Subject % of answers classified as
group Normal Wernicke’s Broca’s

Normal 65 19 16
Wernicke’s 24 63 13
Broca’s 16 19 66

Table 4: Results from the test set.

As we can examine, the model is able to provide
a distinction between subjects with different forms of
aphasia, based on syntactic information. On a level of
a particular sentence, the information is not sufficient,
but based on the whole set of answers in the patient’s
test, we are able to assign the subject to a correct group.

Future Work
We have described ongoing work on distinguishing
aphasia forms with recurrent networks. The integra-
tion of symbolic/sub-symbolic techniques will extend
the range of the current research. An integration of
neural preference Moore machines provides the sym-
bolic interpretation and allows further, more detailed

analysis of the network processing. In addition, such an
analysis may suggest some architectural or representa-
tional constraints of language processing in the brain.
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