
Robot docking with neural vision and reinforcement

Cornelius Weber*,1, Stefan Wermter, Alexandros Zochios

Centre for Hybrid Intelligent Systems, University of Sunderland, DGIC, St Peters Way, Sunderland, SR6 0DD, UK

Available online 10 April 2004

Abstract

We present a solution for robotic docking, i.e. approach of a robot toward a table so that it can grasp an object. One constraint is that our

PeopleBot robot has a short non-extendable gripper and wide ‘shoulders’. Therefore, it must approach the table at a perpendicular angle so

that the gripper can reach over it. Another constraint is the use of vision to locate the object. Only the angle is supplied as additional input. We

present a solution based solely on neural networks: object recognition and localisation is trained, motivated by insights from the lower visual

system. Based on the hereby obtained perceived location, we train a value function unit and four motor units via reinforcement learning.

After training the robot can approach the table at the correct position and in a perpendicular angle. This is to be used as part of a bigger system

where the robot acts according to verbal instructions based on multi-modal neuronal representations as found in language and motor cortex

(mirror neurons).

q 2004 Elsevier B.V. All rights reserved.

Keywords: Reinforcement learning; Unsupervised learning; Multi-modal representation; Hybrid model

1. Introduction

There have been a lot of insights into neural networks

and the way the brain works. Also, there have been

simulations of how such networks can perform interesting

tasks. But when it comes to robotic implementation,

traditional artificial intelligence methods are still dominant.

One reason for this is that both sophisticated perception and

motor skills need to be combined in order to display non-

trivial behaviour. However, these cannot be achieved with a

single algorithm/network type. Therefore, we propose a

hybrid network trained with reinforcement, unsupervised

and supervised training to perform a vision-based docking

action.

For docking, usually non-trainable models of vision are

used such as optic flow from log-polar vision [1], correlation

operators on search templates [11] or other devices such as

laser range finders [10,14] are used as sensory input. Models

of grasping need more sophisticated geometrical infor-

mation about the object, and use vision algorithms based on

graph matching [2], Gabor jets [9] or 3D geometrical object

models [8]. The control scheme employed is usually based

on geometrical calculations. Also a reinforcement solution

for docking has been presented [6] in which to pre-process

the input a neural gas was used for clustering and a neural

field for topological action coding. Visual goal recognition

was done with colour-based threshold operations.

Many of the docking or grasping scenarios are part of

larger projects or goals such as implementing a perceptually

guided robot [2] and using hand gestures for robot teaching

[9]. Emphasis is put on high-speed performance [8],

recharging batteries [10], using embodied representations

[1] or addressing top-level control issues [11]. In our case,

higher-level mirror neuron behaviour shall be modelled (see

Section 4). Therefore, we seek a neural network represen-

tation of a complex behaviour to obtain realistic input to the

envisaged higher level.

Our robot (Fig. 1) has a single behaviour: in any state it

selects the action which leads to the largest expected

reward. This makes the action selection network the core

part. It consists of four neurons, one of them is ‘on’ at any

time, which denote forward, backward, left and right

movement of the robot. During training, they are guided

by the firing rate of one ‘value function’ unit which assigns a

fitness value to any state. Together, these five neurons are

trained by reinforcement learning, in which a scalar

reinforcement signal is given only at the end of each

training action sequence. The value of the signal is positive,

0950-7051/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.knosys.2004.03.012

Knowledge-Based Systems 17 (2004) 165–172

www.elsevier.com/locate/knosys

1 Web: www.his.sunderland.ac.uk.

* Corresponding author. Tel.: þ44-191-515-3274; fax: þ44-191-515-

3461.

E-mail addresses: cornelius.weber@sunderland.ac.uk (C. Weber);

stefan.wermter@sunderland.ac.uk (S. Wermter); a.zochios@talk21.com

(A. Zochios).

http://www.elsevier.com/locate/knosys
http://www.his.sunderland.ac.uk


if the robot docks at the object in parallel to the table, or

negative, if the robot’s shoulders bump into the table at an

angle or if the object is lost out of sight (Fig. 2).

The input to the action selection network is the robot’s

visual perceptual state, defined by its relative position to

the target, an orange fruit at the border of a table. The

vision module is thus the peripheral part. Vision skills are

trained unsupervised as well as supervised. Unsupervised

training leads to a sparsely coded hidden representation of

an input image. The perceptually important representation

of the target object within the image is then trained in a

supervised manner: a recurrent associator neural network

learns to associate the internal representation of the entire

image with the (given) position of the target object.

Additional input to the action selection network is the

robot rotation angle w; supplied by the robot’s internal

odometry.

2. Methods

The peripheral vision module is trained before the action

selection network so that it can supply it the necessary

visually obtained perception as input. Overall, we have three

training phases: first, training the weights W td and Wbu

between the visual input and the ‘what’ area (Fig. 3),

second, training the lateral weights W lat within and between

the ‘what’ and the ‘where’ area, and finally, training the

weights Wc and Wm from the conceptual space to the critic

of the motor outputs, respectively.

2.1. Training the vision module—feature detectors

In the first phase, we will obtain feature detector neurons

on the ‘what’ area to have a more abstract, higher level

representation ~u of the input image ~I (Fig. 3). This is done

based on the idea that the model should generate the data ~I

from a sparse representation ~u: This is done by the wake-

sleep algorithm [7], in which two learning steps are

alternatingly repeated until training has completed: (i) in

the ‘wake phase’, train the top-down, generative weights

W td based on the difference between a randomly chosen

natural image ~Iorig and its reconstruction ~Irec obtained from

the internal representation ~u of the picture and (ii) in the

‘sleep phase’, train the bottom-up, recognition weights Wbu

based on the difference between a random hidden code ~uorig

and its reconstruction ~urec obtained from the visual

representation ~I of the original hidden code. Training

involves only local learning rules and results in localised

edge detectors akin to the simple cells of visual area V1.

With additional modifications to the learning algorithm the

mapping is also topographic.

Fig. 1. The PeopleBot robot during the docking manoeuvre. On the left are visible the camera pointing downward (mounted underneath the top plate) and the

black grippers. Right, the scenario from above. The black grippers are hardly to be seen over the dark robot’s base; a fraction of the camera can be seen bright.

Fig. 2. Geometry of the scenario in top view. The figure depicts the table,

above, with the orange fruit target on it (filled circle). Below is the robot

with its short black grippers. The rectangular field that is visible from the

robotic camera facing downward is outlined by a dotted line. Real world

coordinates ðx; y;wÞ specify the position and rotation angle of the robot. The

perceived position of the target within the robot’s visual field is then defined

by the perceived angle u and distance d:

C. Weber et al. / Knowledge-Based Systems 17 (2004) 165–172166



The following pseudo-code describes the training

algorithm in which the wake phase and the sleep phase

alternate each other repeatedly. Wake phase:

1. Take a picture ~Iorig:

2. Get a sparse hidden representation on the ‘what’ area ~u:

3. Reconstruct the picture ~Irec:

4. Top–down weight update: W td < ð~Iorig 2 ~IrecÞ·~u:

Sleep phase:

1. Generate a sparse, topographic random hidden code

~uorig:

2. Get the imagined picture ~I:

3. Reconstruct the hidden code ~urec:

4. Bottom-up weight update: Wbu < ð~uorig 2 ~urecÞ·~I:

This algorithm, described in detail in Ref. [12],

approximates the Helmholtz machine [3]. Fig. 4, left,

shows examples of trained weights, most of which have

become localised edge detectors, while some neurons are

colour selective.

2.2. Training the vision module—object localisation

The second phase, training the lateral weights W lat

between and within the ‘what’ and ‘where’ areas (Fig. 3),

requires the first phase to be completed. Intra-area lateral

connections within the ‘where’ area (visual area V1) were

originally implemented to endow the simple cells with

biologically realistic orientation tuning curves: their orien-

tation tuning curves were sharpened via competition,

mediated by the lateral weights. In addition, shift invar-

iances were trained and thus V1 complex cells generated

[12]. The function of the lateral weights is to memorise the

underlying representation over time. As an attractor of a

real-valued recurrent network, the representation is thereby

simplified. We exploit this for pattern completion where the

representation ~u of an image with an object of interest is

given on the ‘what’ area while its location ~p on the where

area is not given—while it has always been given during

training.

Training is done by the following procedure: every

image ~I now contains a simulated orange fruit at a particular

location and this location is reflected—in a supervised

manner—as a Gaussian on the ‘where’ area. So the lateral

weights are trained to memorise the internal representation

ð~u; ~pÞ of the image and the location of the orange. After

training, when we have the representation ~u of an image

with an orange but do not know the location of the orange.

Then pattern completion will give us its location, coded in ~p:

The following pseudo-code describes a step of the

training algorithm, which is repeatedly applied after the

‘what’ network has been trained.

1. Take a natural image with an orange placed at

location ~L:

Fig. 4. A selection of trained weights of the vision module. Dark shades of grey denote negative; bright, positive weights. (a) The receptive fields of 12 ‘what’

units, taken from the centre of Wbu: Each unit has three sets of weights to the red, green and blue sub-layers of the input. Three of the upper units are colour

selective, as the weights are different in different sub-layers. (b) and (c) The receptive fields of 12 ‘where’ units, taken from those parts of W lat which are

depicted dark in Fig. 3. The weights from the ‘what’ to the ‘where’ area, (b), are sparse. The recurrent weights within the ‘where’ area, (c), are centre-excitatory

and surround inhibitory, because they were trained to maintain a Gaussian activity profile. Self-connections were set to zero.

Fig. 3. The neural network. Thick arrows denote trained weights W : Only

the ones depicted dark are used during performance while those depicted

bright are involved in training. Letters other than W denote activations

(vectors) on the neural sheets: ~I is the camera image which contains three

layers for its red, green and blue colour components. ~u is the hidden

representation (‘what’) of the image. ~p contains the perceived location

(‘where’) of the target within the image. ~F has a Gaussian profile centred on

the rotation angle w of the robot. ~f is the perceptual space, made up by

multiplying ~p and ~F: c; the critic, holds the value function which is assigned

to each perceptual state ~f unit. ~m are the four motor unit activations.

C. Weber et al. / Knowledge-Based Systems 17 (2004) 165–172 167



2. Get the hidden representation on the ‘what’ area ~u:

3. Initialise ~pL on the ‘where’ area to contain a Gaussian at

location ~L:

4. Initialise activities on ‘what’ and ‘where’ areas as:
~Aorig ¼ {~u; ~pL}:

5. Relaxate activations using W lat for a couple of steps;

memorise as ~Aattrac:

6. Weight update: W lat < ð~Aorig 2 ~Aattrac|fflfflfflffl{zfflfflfflffl} Þ·~Aattrac:

The under-braced term is the association error between

the desired state and the one memorised as an attractor.

Since ~pL is not naturally contained in the data but produced

artificially, training is supervised. Details and parameters

are given in Ref. [13].

Trained weights are shown in Fig. 4, (b) and (c), while

Fig. 5 demonstrates their performance at object localisation.

The representation ~p on the ‘where’ area is at the first time

step (third column) purely a result of the feed-forward input

from ~u from the ‘what’ area. After relaxation (right column),

recurrent connections W lat within the ‘where’ area have

cleaned up the representation (while ~u was fixed).

2.3. Reinforcement training of the action module

In the last phase, we apply reinforcement learning to the

weights Wm of the motor units and the weights Wc of the

value function unit. Their common input is the robot’s own

perceived state ~f which is different for every different

visually perceived target location ~p and every different robot

rotation angle ~w: The representation of ~p is multiplexed

over, here seven, layers to obtain ~f (Fig. 3). Each layer

corresponds to a rotation angle of the robot. Only the layer(s)

nearby the actual angle have non-zero activity (Eq. (2)).

The weights Wc assign each state ~f a critic value c which is

initially positive only at the goal: in our case when the target

is perceived in the middle of the lower edge of the visual

field and when the robot rotation angle w is zero. During

performance, states that lead quickly to the goal will also be

assigned a higher value c by strengthening their connections

to the critic unit. The weights Wm to the motor units which

have been activated simultaneously are also increased, if the

corresponding action leads to a better state, i.e. one which is

assigned a larger c: The algorithm has been described for a

rat navigation task in Ref. [4]; in the following, we will give

details of our implementation.

2.3.1. World and perception model

Reinforcement training of the weights Wc and Wm

involves as input the perceptual state ~f and as outputs the

value c and motor action ~m: All these values can be

simulated to avoid costly real robotic actions. The

simulation runs with ‘real’ world coordinates from which

the perceived state ~f can easily be computed. The real world

coordinates ðx; y;wÞ (Fig. 2) are updated based on the

movement commands contained in the output vector ~m for

the robot speed v and the rotation speed _w :

xðt þ 1Þ ¼ xðtÞ2 v·Dt cosðwÞ

yðt þ 1Þ ¼ yðtÞ2 v·Dt sinðwÞ

wðt þ 1Þ ¼ wðtÞ þ _w·Dt

ð1Þ

Motor units i ¼ 1 and 2 set the velocity v to 0.9 and

20.9, respectively. Units 3 and 4 set the angular velocity _w

to 0.1 and 20.1, respectively.

Using the relation ðy=xÞ ¼ tanðwþ uÞ; we get the robot’s

perceived angle u and distance d to the target (Fig. 2)

u ¼ arctan
y

x

� �
2 w; d ¼

ffiffiffiffiffiffiffiffiffi
x2 þ y2

q

which is used to draw the perceived target onto the

simulated vision input. As a shortcut, instead of drawing a

simulated orange fruit to the vision input area, we directly

placed a Gaussian onto the ‘where’ area as activation

pattern ~p:

We expand the representation ð~p;wÞ so that every

different combination of values leads to a different state ~f

in the expanded perceptual space. First, w is transformed

into a 7-dimensional vector ~F which represents values of w

between 245 and 458 as the centre of its Gaussian activity

profile. ~F is thus an ensemble of heading direction (robot

rotation angle) cells, which contain the information about w

as a population code. The perceptual state vector ~f is a

product of the perceived target location ~p and the heading

direction vector ~F :

fijk ¼ pij·Fk; i ¼ 1…24; j ¼ 1…16; k ¼ 1…7 ð2Þ

which is a Gaussian in a 24 £ 16 £ 7-dimensional cube. Two

examples of ~f are depicted in Fig. 6, right.

Fig. 5. Each row shows, left, the 24 £ 16 pixel camera image, which is

originally in color. Then its representation ~u on the ‘what’ area. Active units

are bright. The third and fourth picture in each row are the representation ~p

on the ‘where’ area at the first and the last time step of a 10 iteration

relaxation. The last row corresponds to the goal position where the orange is

between the tips of the gripper.

C. Weber et al. / Knowledge-Based Systems 17 (2004) 165–172168



The condition whether the robot ‘shoulders’ hit the table

is tested in ðx; y;wÞ-space. If the distance x (of the front

middle of the robot) from the table is smaller than the

absolute value of sinðwÞ·wh with wh the half-width of the

robot, then one of the robot edges would intrude the table.

This constraint in x and w translates implicitly to the robot’s

perceptual space ~f and the robot will learn through the

negative ‘reward’ to avoid this region.

2.3.2. Reinforcement algorithm

A trial begins by setting the robot to a random initial

position ðx; y;wÞ: We have to make sure that the target is

visible and, for simplicity, we set the robot in parallel to the

table, i.e. w ¼ 0: Within one trial, the following steps are

performed until a non-zero reward signal R is given. Each

step involves one motor action and the reading of

perceptions before and after.

1. Compute the perceived target ~p and from this, the

perceived state ~f:

2. Compute the critic activation: c ¼
P

j wc
j ·fj:

3. Compute the probability Pðmi ¼ 1Þ for motor unit i to

be active:

Pðmi ¼ 1Þ ¼
e2aiX

i0

e2ai0
; with ai ¼

X
j

wm
j ·fj ð3Þ

The probabilities sum up to one over the motor units.

One unit is set active.

4. Move the simulated robot according to its motor output,

using Eq. (1).

5. Compute the perceived target location ~p0 and state ~f 0:

6. Compute the critic activation: c0 ¼
P

j wc
j ·fj

0:

7. Set the reward signal:

R ¼

1 if goal reached ðw ¼ 0 and target centred

at lower edge of visual fieldÞ;

20:3 if target at visual field border or robot

hits table;

0 else:

8>>>>>>><
>>>>>>>:

8. Compute the prediction error: d ¼ R 2 ðc 2 g·c0Þ

between the actual reward R and the critic evaluation

c 2 g·c0: The critic evaluation is based on the assump-

tion that the value function increases in time with future

values decaying by the discount factor g ¼ 0:9 :

cðtÞ ¼ RðtÞ þ g·Rðt þ 1Þ þ g2·Rðt þ 2Þ þ · · ·:

9. Update the critic’s weights: Dwc
j / d·fj:

10. Update the weights of the only active motor unit i :

Dwm
ij / d·mi·fj:

Each trial thus constitutes a robot’s experience about

either reaching the goal or loosing the target or hitting the

table. It consists of a sequence of actions and several

learning steps. The more trials have been done, the better the

robot performs, and the shorter each will be, and the more

likely they will end with a positive reward.

Note that in order to learn every weight, it is not

necessary that every perceptual state has occurred. The state

description ~f is made up of a Gaussian covering several state

space units simultaneously (see Fig. 6, right, for a

visualisation). A critic weight wc
j is thus updated similar

to weight wc
j0 if j and j0 are neighbours in the perceptual

space; analogously motor weights wm
ij and wm

ij0 :

This topological relation exploits the fact that similar states

imply similar optimal actions.

Fig. 6. The weights Wc and Wm after reinforcement training, and example activity patterns ~f: Positive connections Wc;m are white, negative connections dark.

Each column shows the connections to one recipient unit from the perceptual space in which ~f resides: it consists of seven 24 £ 16 sized fields, each of which is

devoted a target object representation when the robot is at the angle w; given left. The four units which receive Wm encode motor movements for-from left to

right-forward, backward, left turn and right turn. The activation ~f1 corresponds to a situation where the robot is at an angle slightly larger than 308 and sees the

target at the upper (distant) edge of the visual field (this corresponds roughly to the turning point in Fig. 7, the situation in Fig. 2 or the percept in the third row in

Fig. 5). ~f2 is near the goal position, as the robot sees the target right in front and has an angle w ¼ 0 (fourth row in Fig. 5).

C. Weber et al. / Knowledge-Based Systems 17 (2004) 165–172 169



3. Results

The weights obtained by reinforcement learning are

shown in Fig. 6. The weights Wc to the value function unit

are over-trained as can be seen from their wiggly structure

around the goal at angle zero. At earlier stages they are

smooth and positive around the goal position. Nevertheless,

training was continued so that the simulated robot has

reached its goal thousands of times. The motor weights Wm

are seemingly unaffected by over-training—their shape does

not change noticeably. However, their absolute values

continue to grow. As an effect, the motor unit outputs

become more deterministic (cf. Eq. (3)).

The structure of the motor weights Wm is complex and

only partly obvious. It is obvious in the simple situation

where the robot perceives the target in front of him while

having a rotation angle of w ¼ 0: This corresponds to the

perceptual input ~f2 in Fig. 6. The weights to motor unit one

(left column of Wm in Fig. 6) in this area are positive (white)

so to excite the ‘forward’ unit. The ‘backward’ motor unit

(second column of Wm) has inhibitory connections (black)

originating from this area, thus suppressing its response.

The ‘backward’ motor unit, however, has positive (white)

connections to the sides of this position, so that the robot

moves back if the target is perceived nearby to the left or to

the right (only at a rotation angle w ¼ 0).

3.1. Simulated robot performance

A successful example of simulated docking performance

is depicted in Fig. 7 which displays a surprisingly complex

and successful movement. We have observed the perform-

ance limits to be reached, if the offset (y; Fig. 2) to the target

is large. This extreme case leads to two possible actions:

first, a movement at which the perceived target reaches

the border of the visual field or second, a seemingly

successful drive toward the target, but in a narrow angle

(w large) so that the robot’s ‘shoulders’ eventually touch the

table. Success in these cases might be possible with a

complex strategy involving small movements forth and

back including turning, but is not discovered by the

algorithm, possibly because of the rough discretisation of

Fig. 7. The simulated trained robot during the docking manoeuvre. The

upper bar corresponds to the table location and the half-circle represents the

target. The robot’s grippers (not depicted) are near the front of the arrow

shown on the robot. Outlines of previous poses are in brighter grey. After

start, the robot first moved backward in order to turn and then approach the

target. Shown is a screen capture of a graphical user interface.

Fig. 8. Snapshots from a docking sequence. The video can be seen at: http://www.his.sunderland.ac.uk/robotimages/Cap0001.mpg.

C. Weber et al. / Knowledge-Based Systems 17 (2004) 165–172170

http://www.his.sunderland.ac.uk/robotimages/Cap0001.mpg


the angle space, in which w is represented by only seven

increments.

3.2. Application to the PeopleBot robot

Without having done any training on a real robot, we

used the trained network successfully for robotic control.

Only a subset of all weights (displayed dark in Fig. 3) is

used during performance. The image ~I is now taken from the

robotic camera that looks down at a fixed angle to the space

in front (Figs. 1 and 8). The robot orientation angle w is

taken from a robot-internal proprioceptive update mechan-

ism (the starting angle is always zero). Finally, the outputs

are directed to the wheels, the control of which accepts

values for speed and rotational speed.

The bottleneck of our application is vision: the

recognition of the orange fruit which constitutes the target

is brittle and disturbed, for example, by large contrasts in the

surrounding. In addition, we have a distortion of vision,

because the camera does not point exactly vertically. Thus

the physical model, Eq. (1), is only a rough approximation.

This, however, does not matter, first, because in any case the

speed values must be adjusted to reasonable values.

Secondly, because the concept of assigning one motor

output to every state works even, if the speed is too slow and

the state at the next time step remains the same: then the

motor directive will simply remain, until eventually, another

state is reached.

Another restriction is the small size of the visual field,

limited by the narrow position of the camera and its

maximal zoom. A narrow table must be used to increase the

visual field—a too large visual field again would lead to

problems in target recognition. Finally, we have not yet

implemented the command to close the gripper at arrival at

the target.

4. Discussion

In this paper, we demonstrated that purely neural

network based vision and control algorithms can success-

fully be applied to a real robotic docking problem.

Currently, we are developing a higher-level associative

network in which mirror neurons shall emerge (Fig. 9).

Mirror neurons have been found in motor and language

cortex and fire either when an action is performed or when it

is observed, or both [5]. The network receives information

from multiple modalities and represents them as a hidden

code ~r: The vertical connections are trained with a sparse

coding unsupervised learning scheme similar to

the Helmholtz machine described earlier in this paper.

The inputs are collected from robotic actions, which are

performed interactively in the environment. The data

contain only instantaneous information, i.e. the whole

sequence of actions is not known. Therefore, neurons do

not necessarily fire over a sustained period in time as do

mirror neurons. However, since ~r is a distributed code, some

units may specialise to code for longer sequences. The

horizontal recurrent connections (depicted as open circle)

are trained as an associator neural network. They are used in

a neural activation relaxation procedure which is expected

to (i) clear noise of the representation ~r; (ii) predict

the hidden code of the next time step and (iii) display

prolonged firing. As a possible extension, associator

recurrent connections may also feed back to the input,

acting as a forward model. This would be particularly

interesting for the cortical feedback to the motor units,

because of implications for motor control: after repetitive

exercising this network might be able to perform the action

sequence. This would render superfluous the reinforcement

trained part with its large perceptual state ~f:

Acknowledgements

This is part of the MirrorBot project supported by a EU,

FET-IST programme, grant IST-2001-35282, coordinated

by Prof. Wermter.

References

[1] N. Barnes, G. Sandini, Direction control for an active docking

behaviour based on the rotational component of log-polar optic flow,

in: ECCV2000—Proceedings of the European Conference on

Computer Vision, vol. 2, 2000, pp. 167–181.

[2] M. Becker, E. Kefalea, E. Mal, C. von der Malsburg, M. Pagel,

J. Triesch, J.C. Vorbrggen, R.P. Wrtz, S. Zadel, Gripsee: a gesture-

controlled robot for object perception and manipulation, Autonom.

Rob. 6 (1999) 203–221.

[3] P. Dayan, G.E. Hinton, R. Neal, R.S. Zemel, The Helmholtz machine,

Neur. Compd. 7 (1995) 1022–1037.

[4] D.J. Foster, R.G.M. Morris, P. Dayan, A model of hippocampally

dependent navigation, using the temporal difference learning rule,

Hippocampus 10 (2000) 1–16.

Fig. 9. The envisaged mirror neuron network. Mirror neuron properties are

expected to evolve among some of the neurons in the top layer. They carry

an internal representation ~r of all of the inputs, below. The inputs are from

multiple modalities including higher-level representations. The vector ~l

contains representations from language areas. p~v contains the visual

perception which includes the identity and perceived location of a target to

be grasped. ~m are the motor unit activations including wheels, pan-tilt

camera and gripper. m~s denotes motor sensory unit activations and may also

include available idiothetic information such as the rotation angle w of the

robot. ~i are other internal states such as the value function of the critic.

C. Weber et al. / Knowledge-Based Systems 17 (2004) 165–172 171



[5] V. Gallese, L. Fadiga, L. Fogassi, G. Rizzolatti, Action recognition in

the premotor cortex, Brain 119 (1996) 593–609.

[6] H.M. Gross, V. Stephan, M. Krabbes, A. neural, field approach to

topological reinforcement learning in continuous action spaces, in:

Proceedings of the WCCI-IJCNN, 1998.

[7] G.E. Hinton, P. Dayan, B.J. Frey, R. Neal, The wake-sleep

algorithm for unsupervised neural networks, Science 268 (1995)

1158–1161.

[8] A. Namiki, Y. Nakabo, I. Ishii, M. Ishikawa, High speed grasping

using visual and force feedback, in: Proceedings of the IEEE

International Conference on Robotics and Automation, 1999.

[9] H. Ritter, J. Steil, C. Noelker, F. Roethling, P. McGuire, Neural

architectures for robotic intelligence, Rev. Neurosci. (2003).

[10] M.C. Silverman, D. Nies, B. Jung, G.S. Sukhatme, Staying alive: a

docking station for autonomous robot recharging, in: Proceedings of

the IEEE International Conference on Robotics and Automation,

2002.

[11] J. Spofford, J. Blitch, W. Klarquist, R. Murphy, Vision-guided

heterogeneous mobile robot docking, in: Sensor Fusion and

Decentralized Control in Robotic Systems II, 1999.

[12] C. Weber, Self-organization of orientation maps, lateral connections,

and dynamic receptive fields in the primary visual cortex, in:

G. Dorffner, H. Bischof, K. Hornik (Eds.), Proceedings of the

ICANN, Springer, Berlin, 2001, pp. 1147–1152.

[13] C. Weber, S. Wermter, Object localization using laterally connected

what and where associator networks, in: Proceedings of the ICANN,

2003, pp. 813–820.

[14] M. Williamson, R. Murray-Smith, V. Hansen, Robot docking using

mixtures of gaussians, Adv Neural Inform Process Syst 11 (1999)

945–951.

C. Weber et al. / Knowledge-Based Systems 17 (2004) 165–172172


	Robot docking with neural vision and reinforcement
	Introduction
	Methods
	Training the vision module-feature detectors
	Training the vision module-object localisation
	Reinforcement training of the action module

	Results
	Simulated robot performance
	Application to the PeopleBot robot

	Discussion
	Acknowledgements
	References


