
Journal of Applied Intelligence, 12, 27{44 (2000)
c
 2000 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Knowledge Extraction from Transducer Neural Networks

STEFAN WERMTER

University of Sunderland, Centre of Informatics, SCET

St. Peter's Way, Sunderland SR6 0DD, United Kingdom

;

Abstract. Previously neural networks have shown interesting performance results for tasks such as
classi�cation, but they still su�er from an insuÆcient focus on the structure of the knowledge represented

therein. In this paper, we analyze various knowledge extraction techniques in detail and we develop new
transducer extraction techniques for the interpretation of recurrent neural network learning. First, we
provide an overview of di�erent possibilities to express structured knowledge using neural networks. Then,
we analyze a type of recurrent network rigorously, applying a broad range of di�erent techniques. We argue
that analysis techniques, such as weight analysis using Hinton diagrams, hierarchical cluster analysis, and
principal component analysis may be useful for providing certain views on the underlying knowledge.
However, we demonstrate that these techniques are too static and too low-level for interpreting recurrent
network classi�cations. The contribution of this paper is a particularly broad analysis of knowledge
extraction techniques. Furthermore, we propose dynamic learning analysis and transducer extraction as
two new dynamic interpretation techniques. Dynamic learning analysis provides a better understanding of
how the network learns, while transducer extraction provides a better understanding of what the network
represents.

Keywords: Neural network learning, symbolic interpretation, knowledge extraction, SRN networks,
analysis of connectionist learning

1. Introduction

There has been a lot of interest lately in knowledge
structures and their representation in arti�cial
neural networks [H�olldobler, 1990, Kurfe�, 1991,
Sperduti et al., 1995, Wermter, 1995, Hallam,
1995, Medsker, 1995, Sun, 1995, Wermter et al.,
1996, Elman et al., 1996, Craven, 1996, Wermter,
1999]. Arti�cial neural networks (or connection-
ist networks) have already demonstrated interest-
ing learning results for various classi�cation tasks.
However, it continues to be very diÆcult to under-
stand the underlying representations within the
connectionist networks which lead to this perfor-
mance. A better understanding of the connec-

tionist representations learned is not only impor-
tant for improving the credibility of a computa-
tional technique, but also for improving the net-
work performance and the integration possibilities
with symbolic representations.

Several attempts have been made to interpret
connectionist networks, focusing on feedforward
networks in particular [Andrews and Diederich,
1996, Abe et al., 1993, Shavlik, 1994]. For in-
stance, visualizations of internal activations or
weight strengths can be used to get an impres-
sion of the internal knowledge [Hinton, 1986, Gor-
man and Sejnowski, 1988]. Some e�ort has also
been made to reduce the network size in order to
simplify the knowledge expressed therein by elimi-

28 Wermter

nating very small weights. Furthermore, groups of
similar weights can be replaced with their average
strength [Shavlik, 1994]. In addition, techniques
such as hierarchical cluster analysis have been
used to interpret connectionist networks. Never-
theless, often the interpretation of the dynamics
of the learning process and the underlying knowl-
edge has been neglected, especially in the case of
dynamic recurrent neural networks.

The interpretation of recurrent networks is more
diÆcult than that of non-recurrent feedforward
networks, since the previous context in recur-
rent networks has an important dynamic in
uence
within these networks. The internal states in re-
current networks do not only depend on the input
but also on the internal state of the local mem-
ory based on previous inputs [Elman, 1995, Giles
and Omlin, 1993, Omlin and Giles, 1996]. For
this reason, to date the focus has been primarily
on smaller recurrent networks and arti�cially gen-
erated data. For instance, an interesting current
approach interprets the training of a SRN network
that has two input, two output and two internal
elements in learning the sequence anbn [Wiles and
Elman, 1996]. It has been discovered that the net-
work behaved like a spiral which moved to and
from a �x point. Whereas this seems to be a plau-
sible interpretation of the behavior of recurrent
networks trained for the learning of the sequences
a
n
b
n, di�erent interpretations are required when

we move to di�erent tasks and data sets closer to
real-world scenarios.

In the past, we have developed a large \real-
world" system for spoken language analysis which
makes extensive use of SRN networks [Wermter
and Weber, 1997, Wermter and Meurer, 1997].
The spoken input is recognized by a speech rec-
ognizer and analyzed at the syntactic, semantic
and dialog levels based on an incremental analy-
sis, parallel syntactic and semantic interpretation,
and robust processing of errors. To date, how-
ever it is not yet possible to focus on the inter-
pretation of the learning process and the inter-
pretation of the connectionist knowledge. In this
paper, we are primarily concerned with a detailed
interpretation of the learning behavior as well as a
symbolic interpretation of the learned knowledge
after training. In order to carry out such a de-
tailed analysis we will concentrate on a syntactic

transformation task as a representative task for
our large-scale speech/language system. The task
for the recurrent network is to process sentences
and associate their syntactic classes at the phrasal
level, e.g. noun phrase, prepositional phrase etc.

Using this task, we analyze a recurrent neural

network using many di�erent techniques. We have
structured the paper as follows. First, we intro-
duce our representative syntactic transformation
task. Then, we de�ne and illustrate a) dynamic
learning analysis, b) weight analysis, c) hierarchi-
cal activation analysis, d) component activation
analysis, and e) transducer extraction. We rigor-
ously compare these techniques on the same net-
work and the same data set and argue that these
di�erent techniques provide mutually complemen-
tary interpretations. The contribution of this pa-
per is a particularly broad and concrete analysis

of the knowledge extraction process which has not
been done before. Furthermore, we propose dy-
namic learning analysis and transducer extraction
as two new interpretation techniques. Dynamic

learning analysis provides a better understanding
of how the network learns while transducer extrac-
tion provides a better understanding of what the
network represents.

2. Extracting structured knowledge using

syntactic analysis task

In order to examine a number of di�erent tech-
niques for extracting structured knowledge from
connectionist networks in a rigorous manner, we
will focus on a particular task. In our spo-
ken language environment [Wermter and L�ochel,

1996, Wermter and Weber, 1997, Wermter and
Meurer, 1997], we have trained many variations
of SRN networks [Elman, 1991] with many sen-

tences using various corpora of several thousand
words each.

Based on a corpus of sentences from the domain
of scheduling appointments (2355 words), table 1
summarizes the accuracy of label assignment on
the unknown test set. The related experiments
and results have been reported elsewhere in detail
[Wermter and L�ochel, 1996, Wermter and Weber,
1997, Wermter and Meurer, 1997, Wermter, 1998].
Here we just want to illustrate the real-world net-
work performance in table 1. The focus, how-

Knowledge Extraction from Transducer Neural Networks 29

ever, is on an analysis of the process of extracting
explicit knowledge from implicitly learned knowl-
edge. In this paper, we concentrate on syntactic
phrasal assignment (marked by *) in table 1.

Table 1. Performance of some networks on the test set of

the appointment scheduling corpus

Task Accuracy on test set

Basic syntactic disambiguation 89%

Basic semantic disambiguation 86%

Syntactic phrasal assignment* 84%

Semantic phrasal assignment 83%

Dialog act assignment 79%

Word repair detection 94%

Phrase repair detection 98%

To demonstrate this process of knowledge ex-
traction, we will here use 15 of these sentences
(containing 76 words) from the domain of appoint-
ment scheduling. For illustration purposes, we
concentrate on the learning of a syntactic phrasal
assignment task where a sequence of basic cate-
gories of words is associated with a sequence of ab-
stract syntactic categories. The actually occurring
syntactic basic categories are noun (n), verb (v),
adverb (a), adjective (j), preposition (r), deter-
miner (d) and pronoun (u). The abstract phrasal
categories are noun group (ng), verb group (vg),
and prepositional group (pg). The task of the re-
current network is to learn to assign phrasal cat-
egories on the basis of basic syntactic categories
in order to support a robust
at understanding
of spontaneously spoken language. Below, we
show some example utterances from the corpus,
together with the syntactic categories at the basic
and the phrasal level.

1. I (u ! ng) thought (v ! vg) in (r ! pg) the
(d ! pg) next (j ! pg) week (n ! pg)

2. That (u ! ng) is (v ! vg) the (d ! ng)
Thursday (n ! ng) after (r ! pg) Easter (n
! pg)

Based on these seven basic syntactic and three
phrasal syntactic categories, we use an SRN net-
work with seven input units, three internal units
and three output units (the networks in the ac-

tual system contain more categories and have been
trained with several thousand words, but for il-
lustration purposes we restrict ourselves to this
smaller network). The learning rate was 0.05 and
momentum 0.9. The weight updates were per-
formed incrementally after each training pattern.
Each training pattern consisted of the basic syn-
tactic category at the input layer and the abstract
phrasal category at the output layer.
Figure 1 shows a simpli�ed example of such a

recurrent network for the task of syntactic phrase
assignment.

Output

Input

Context-
layer

AAAA
AAAA

N
oun group

Prepositional group

V
erb group

Pronoun

N
oun

A
djective

V
erb

A
dverb

Preposition

D
eterm

iner

Fig. 1. Recurrent network for knowledge extraction for

syntactic phrase assignment

The activation of an output element Oj(t) at
time t in SRN networks is computed on the basis
of the weighted activation Hi(t) of all incoming
connections limited by the logistic function f .

Oj(t) = f(
X

i

wijHi(t))

The activation of an element on the internal
layer Hl(t) is computed in a similar manner. Here
the activation of the input layer Ik(t) at time
t is used as the activation of the internal layer
Hm(t� 1) at the previous time step t� 1.

30 Wermter

Hl(t) = f(
X

k

wklIk(t) +
X

m

wmlHm(t� 1))

3. Dynamic learning analysis: knowledge

structuring during lazy learning

In the past, most work on knowledge structures
and connectionist networks has focused on static
connectionist network representations. However,
important insights can be gained by examining
how certain knowledge structures emerge and de-
velop over time before a certain task is learned
completely.
Frequently, the interpretation of the learning

behavior is just demonstrated by means of the
learning curve of the overall error reduction over
time. However, the learning curve is just the �rst
step in a more detailed analysis and can only pro-
vide preliminary hints about the performance of
a network over the training time. Figure 2 shows
the learning curve with the overall sum squared
error over time.

0 patterns 50000 100000 150000 200000
0.0

0.2

0.4

0.6

0.8

Error

Fig. 2. Learning curve for syntactic phrasal assignment

The learning curve shows that the speed of
learning di�ers substantially over time. Further-
more, we can see di�erent stages during the learn-
ing process. In the beginning, learning proceeds
fast, but later learning is slower and it takes longer

to make signi�cant improvements. For instance,
between 70000 and 140000 it seems that learning
is about to �nish before there is a �nal signi�cant
improvement.
We will now examine how the network reaches

its performance. We start the analysis directly af-
ter the random initialization of the weights. This
is the state before learning starts. We want to
give an overview of the overall performance for all
input patterns at di�erent time steps. To this ef-
fect, we show the error for each of the 76 patterns
of the demonstration set at di�erent time steps.
Figure 3 shows the individual error for each of the
76 patterns before training.

0

Individual patterns

10 20 30 40 50 60 70
0.000

0.200

0.400

0.600

0.800

Error

Fig. 3. Performance for individual patterns before learn-

ing

Based on the random initialization, all patterns
show a relatively high error. At this point, it
is to be expected that the values of each out-
put element di�er from the desired value 0 or
1 by 0:5. Therefore the expected error for an
individual pattern for three output elements isp
0:52 + 0:52 + 0:52 = 0:866. This expected error

value is con�rmed in this �gure.
As shown in �gure 2, the error decreases quickly

at the start of the training. The state after 100
patterns of the training set is shown in �gure 4.
First, we can observe that after 100 training pat-
terns, the error for some of the 76 patterns shown
could be reduced signi�cantly. Other patterns still
show a high error. Obviously, the network has
started to learn patterns selectively.

Knowledge Extraction from Transducer Neural Networks 31

0 10 20 30 40 50 60 70
0.000

0.200

0.400

0.600

0.800

1.000
Error

Individual patterns

NG patterns

other patterns

Fig. 4. Performance for individual patterns after 100

training patterns

A more detailed analysis revealed that the pat-
terns with a lower error are exactly those patterns
which belong to the noun group NG. After only
100 patterns, the network has recognized that the
global error can be minimized signi�cantly by fo-
cusing on the NG patterns, since these patterns
occur more frequently than, for instance, preposi-
tional groups or verb groups. Therefore, at �rst
the network has learned a constant mapping of all
patterns to the noun group, since this reduces the
overall error most at this stage. This explains why
certain patterns in �gure 4 still exhibit a high er-
ror and others a low error. The patterns with a
low error are exactly the patterns which have been
classi�ed correctly as noun groups.
Figure 5 shows the detailed performance after

600 patterns. After the network has learned a con-
stant mapping to NG, we can observe that the
performance for the NG patterns has improved
even further. However, we also observe that V G
patterns have been learned. A more detailed anal-
ysis of the output preferences reveals that at this
stage, in addition to all NG, all V G patterns have
also been learned correctly. This is also demon-
strated in �gure 5. All the remaining error pat-
terns at this stage are those patterns which should
belong to a prepositional group PG but which are
still categorized as noun groups NG. All NG pat-
terns and all V G patterns are classi�ed correctly.
After the network has learned the most frequent
NG patterns, the second most frequent V G pat-

terns are learned. Thus, one could state that the
network pursues a conservative lazy learning strat-
egy and learns frequently occurring and simple
regularities �rst.

0 10 20 30 40 50 60 70
0.000

0.200

0.400

0.600

0.800

1.000

Individual patterns

NG patterns

PG patterns
Error

VG patterns

Fig. 5. Performance for individual patterns after 600

training patterns

Afterwards, the network attempts to improve
all patterns, especially the remaining patterns for
prepositional groups PG. The occurring nouns,
pronouns, determiners, and adjectives can either
be part of PG patterns or NG patterns. In order
to resolve this potential for ambiguity, previous
context must be used to learn the correct class
assignment. Again, we have an example of the
conservative lazy learning strategy of the network,

0 10 20 30 40 50 60 70
0.000

0.200

0.400

0.600

0.800

1.000
Error

Individual patterns

3 exceptions of PG patterns

PG patterns

NG patterns, VG patterns

Fig. 6. Performance for individual patterns after 3000

training patterns

32 Wermter

since at �rst the network has learned patterns
which do not need previous context knowledge for
the category assignment. Only after the simple
non-context-dependent category assignments have
been learned, are those patterns learned which re-
quire the context of previous pattern assignments.

The state of the network after 3000 patterns is
shown in �gure 6. All patterns are classi�ed cor-
rectly with the exception of three. Comparing �g-
ures 5 and 6, the remaining error for the individual
patterns could be reduced signi�cantly. For the
learning of the PG patterns, it was necessary for
the network to integrate the local preceding con-
text. After 150000 patterns all regularities have
been learned as shown in �gure 7. In comparison
with �gure 6 we point out the smaller scaling of
the vertical axis. At this stage all patterns have
been learned, even though there are di�erences be-
tween the error rates of individual patterns. In or-
der to reach this 100% correctness on the training
set, it may be necessary to give up a reasonably
good state at a certain stage in order to reach an
even better stage later. This is also re
ected in
the global learning curve in �gure 2.

0 10 20 30 40 50 60 70
0.000

0.200

0.400

0.600

Error

Individual patterns

all NG patterns,VG patterns,
PG patterns correct

Fig. 7. Performance for individual patterns after 150000

training patterns

In general, the network pursues a conserva-
tive lazy learning strategy. First, simple and fre-
quently occurring generalizations of one category
are learned. Only when the network cannot min-
imize its error signi�cantly any more, are other
frequently occurring categories integrated. Fur-
thermore, only when all those patterns have been
learned that do not require previous local context,
are those patterns learned that require context for
the correct category assignment of otherwise am-
biguous input. Finally, any remaining exceptions
are learned. During this conservative learning pro-
cess it may be possible that the overall error in-
creases brie
y in order to reach a better overall
state later.

4. Weight analysis for knowledge extrac-

tion

Visualizations of internal weight strengths can be
used to get an impression of the internal knowl-
edge. In our experiments, the training set was
learned correctly after 150000 patterns and this is
where we start our analysis. We start with such
a weight analysis since weights provide the lowest
level of interpretation of a connectionist represen-
tation. Figure 8 shows the weights of the network
for three di�erent time steps. It is illustrated how
the weights change over time during learning.

In this �gure the identi�ers of the source con-
nectionist elements are shown horizontally and the
identi�ers of the goal connectionist elements are
shown vertically. We start with the horizontal
axis. From left to right, we can see the weights
from the threshold element (S), from the input
connectionist elements for the syntactic basic cat-
egories (n, j, v, a, r, u, d), from the three internal
elements (h1, h2, h3) and from the three context
elements (c1, c2, c3). In the vertical axis from
top to bottom, we see the weights to the three
internal elements (h1, h2, h3) and to the output
elements representing the abstract syntactic cate-
gories (VG, NG, PG).

Knowledge Extraction from Transducer Neural Networks 33

S n j v a r u d h1 h2 h3 c1 c2 c3

h1

h2

h3

VG

NG

PG

S n j v a r u d h1 h2 h3 c1 c2 c3

h1

h2

h3

VG

NG

PG

h1

S n j v a r u d h1 h2 h3 c1 c2 c3

h2

h3

VG

NG

PG

after 100 patterns

after 600 patterns

after 150000 patterns

Fig. 8. Weight analysis at the beginning of training (100 patterns), during training (600 patterns) and after training

(150000 patterns)

White boxes represent positive weights, black

boxes negative weights. The size of the boxes

corresponds to the size of the weights. The copy

connections from the internal layer to the context

layer are not changed. Therefore, they are not

shown since they are always equal to 1.

We start with the analysis of the �rst third of

�gure 8. After random initialization, this �rst

third shows all weights of the network after 100

patterns. At this point, all NG patterns can be

classi�ed correctly, but no other patterns have

been learned yet. The network has learned a con-

stant output in order to reduce the overall error

as much as possible. We can see in �gure 8 why

the network produced this constant NG class.

34 Wermter

We can see that the weights from the input ele-
ments of the syntactic basic categories (n, j, v, a,
r, u, d) to the internal elements (h1, h2, h3) are
relatively small and similar. The same holds for
the weights from the context elements (c1, c2, c3)
to the internal elements. This is due to the ran-
dom initialization at the beginning of the train-
ing. The weights from the internal elements to
the output elements of the abstract syntactic cat-
egories (V G, NG, PG) are negative for V G and
PG; those from the internal elements to NG are
close to 0. This is the reason why the network pro-
duces constantly the NG category at this stage.
Now we focus on the state of the network after

presenting 600 patterns, also shown in �gure 8.
At this point, all NG and all V G patterns are
assigned correctly. This is also re
ected in the
weights. We observe positive weights from n, u
and d to the internal elements and positive weights
from the internal elements to NG. However, we
see negative weights from v to the internal ele-
ments and from the internal elements to V G. The
PG patterns are not categorized correctly at this
point. One reason for this is that the PG pat-
terns depend signi�cantly on the previous con-
text. However, at this point, the network has
just learned the obvious preferences and is only
just starting to change the weights of the context
layer.
The network state after 150000 patterns is

shown at the bottom of the �gure. In the internal

layer, a distributed representation has developed.
Therefore, a direct interpretation is not easily pos-
sible. However, it is observed that the �rst inter-
nal element is primarily important for PG detec-
tion, the second internal element plays an impor-
tant role in V G assignment and the third internal

element is important for NG. Nevertheless, this
is a distributed rather than a local representation
and there is additional in
uence from other ele-
ments. Furthermore, the weights of the context
layer (from c to h) have changed. This is neces-
sary in order to learn the PG group assignment.
Generally speaking, we can explain certain phe-

nomena using this type of weight analysis at the
lowest interpretation level of a network. However,
it is diÆcult to extract explicit knowledge and a
deeper understanding of the behavior of the net-
work directly from the weights. Reasons for this

diÆculty include (1) the static representation of
the weights which does not show the dynamics of a

recurrent network, (2) the distribution of weights

and activation, and (3) the number of weights,

especially in the case of larger networks. There-
fore, some e�ort could be made to reduce the size

of the network by eliminating very small weights.

Furthermore, groups of similar weights could be

replaced with their average strength. Nonethe-
less, weight analysis is still too detailed for larger

networks.

5. Component activation analysis for

knowledge extraction

Weight analysis focuses on the weights and pro-
vides a very low-level analysis. One way to address

this problem is to move towards activation analy-

sis where the activations of internal elements are

analyzed. Since internal elements receive activa-
tion from a number of weighted connections, the

activation of an internal element integrates sev-

eral weighted connections and provides a higher

abstraction level of analysis.

In order to demonstrate how such an analysis is
performed, we will use the same SRN network we

have introduced in the previous section and store

all vector representations of the internal layer for

each pattern. These vector representations consti-

tute the input to a cluster algorithm which pro-
vides a hierarchical representation in the form of

a dendrogram. Vectors with similar vector repre-

sentations will end up in the same cluster.

Figure 9 shows the initial part of patterns as

they were clustered according to their internal
activations. It can be clearly observed that the

internal representations re
ect the classi�cation

according to the three classes V G, NG, and

PG. That is, based on the weights, the internal
layer has learned representations which particu-

larly support this classi�cation. A single word can

appear in di�erent contexts and can lead to dif-

ferent internal representations. For instance, the
word \the" is shown with two di�erent represen-

tations. One representation is its use as part of

the NG class, and the other as part of the PG

class. Therefore, we �nd both representations at

di�erent positions within the dendrogram.

Knowledge Extraction from Transducer Neural Networks 35

 TUESDAYNNG
 ALLUNG

 THOMASNNG
 HEREANG

 ADNG
 THATUNG
 IUNG
 IUNG

 USUNG
 WEUNG

 WEDNESDAYNNG
 THURSDAYNNG
 ADNG
 FOURTEENTHNNG
 THEDNG
 MORNINGNNG

 NINENPG
 ATRPG
 INRPG

 THREENPG
 WEEKNPG
 NEXTJPG
 HALFJPG

 ONPG
 NINENPG
 ATRPG

 THEDPG
 ISVVG
 COMEVVG
 THOUGHTVVG
 MUSTVVG
 CANVVG
 APPEARVVG

 AGREEVVG
 ISVVG

Fig. 9. Hierarchical cluster analysis of internal classi�cation representations (for visibility purposes, only a portion is shown

here)

6. Principal component analysis for

knowledge extraction

Another kind of analysis which can be used for

interpreting the internal representations of clas-

si�cations is principal component analysis. Fig-

ure 10 shows the result of this analysis for our

current task. All vectors from the internal layer

and the corresponding identi�ers provide the in-

put for the principal component analysis. Vec-

tors which di�er substantially from each other are

depicted in the �gure with a large distance. It

can also be observed that the internal representa-

tions re
ect the preference mappings learned for

the three category classes. NG, V G, and PG pat-

terns are distributed across di�erent areas. Thus,

the classi�cation of the internal representations

can be clearly seen. This shows that the network

has actually learned the classi�cation task well.

After learning has been completed, the internal

representation characterizes the preference map-

ping. According to cluster analysis or principal

component analysis, similar internal vector repre-

sentations are responsible for the representation

of similar preference assignments to equal cate-

gories. However, the interpretation of the weights

by means of Hinton diagrams and of the activa-

tions via cluster analysis and principal component

analysis only provides a limited form of structur-

ing to the extracted knowledge.

36 Wermter

 IUNG

 THOUGHTVVG

 INRPG

 THEDPG

 NEXTJPG
 WEEK NPG

 THURSDAYNNG*

 MORNINGNNG
 ATRPG

 NINENPG

 CANVVG*

 WEUNG

 UNSUNG

 ONAPG

 HALFJPG

 THREENPG

 AGREEVVG

 THEDNG*
 FOURTEENTHNNG

 ISVVG

 ADNG

 WEDNESDAYNNG
 IUNG*

 COMEVVG MUSTVVG

 ATRPG

 NINENPG

 HEREANG

 IUNG*

 APPEARVVG

 THOMASNNG

 THATUNG*

 ISVVG

 ADNG

 TUESDAYNNG

 ALLUNG*

 HAVEVVG

TUESDAY

 ADNG

 LECTURENNG WEUNG*

 COULDVVG

 USUNG

 ATRPG

 NOONNPG

 MEETVVG

 LETVVG*

 YOUUNG

 USUNG

 ADNG

 DATENNG

 FIXVVG

 DASUNG*

 ISVVG

 THEDNG THURSDAYNNG

 AFTERRPG

 EASTERNPG

 MAKEVVG*

 YOUUNG

 ADNG

 SUGGESTIONNNG

 TILLRPG*

 THENAPG

 SHOULDVVG*

 WEUNG

 INRPG

 MARCHNPG

 ADNG
 OTHERJNG

 DATENNG

 FIXVVG

 THATUNG*

 ISVVG

 ADNG TUESDAYNNG

Fig. 10. Principal component analysis of internal classi�cation representations

7. Transducer extraction

Words and sequences of words can be represented

as syntactic, semantic, and pragmatic category

preferences. Then they can be input, for instance,

to SRN networks. Each input representing a se-

quence of category preferences is associated with

a sequence of corresponding output preferences.

This simple description of sequence analysis is

similar to the function of synchronous sequen-

tial machines [Booth, 1967, Kohavi, 1970, Shields,

1987], although preferences and learning are not

yet considered in such machines. Therefore, we

shall focus on extensions of synchronous sequen-

tial machines for representing sequential knowl-

edge, especially synchronous Moore machines. We

start with the basic de�nition of a synchronous se-

quential machine which is also called a transducer:

De�nition of a Synchronous Sequential Ma-

chine, Transducer

A synchronous sequential machine M is a tuple
M = (I; O; S; fs; fo), with

1. I , O �nite, nonempty sets of input and output
2. S nonempty set of states
3. The function fs : I�S ! S is state transition

function
4. The function fo is an output function. If the

output depends on the state and the input,
the machine is a so-called Mealy machine with
the output function fo : I � S ! O. If the
output only depends on the state the machine,
the later is a so-called Moore machine with
the output function fo : S ! O. These syn-
chronous sequential machines are sometimes
called transducers.

A sequential machine assigns an output and a
new state to an input and an old state. This can
be done for a whole sequence of inputs and states
in discrete time. The set S is not necessarily �-
nite [Booth, 1967], although this is assumed in
the case of �nite machines. Whereas automata

Knowledge Extraction from Transducer Neural Networks 37

or acceptors of languages decide whether a cer-
tain input belongs to the corresponding grammar,

these sequential machines are transducers which

change their internal states dynamically, depend-

ing on the inputs and the previous states, while

also providing an output for each input.

Mealy and Moore machines are slightly di�er-

ent from each other. Moore machines determine
the state �rst and afterwards this state is used to

provide the output. In contrast, the output in a

Mealy machine depends also directly on the cur-

rent input. However, it can be shown that for each

Moore machine there is an equivalent Mealy ma-

chine and vice versa [Booth, 1967, Hopcroft and
Ullman, 1979].

In our case, we concentrate on Moore machines

since the output in certain neural networks is

based on the internal state. This holds, for in-

stance, for feedforward networks or SRN networks.

Whereas sometimes [Sun, 1995] a sequential ma-

chine has been used to model a single element of
a neural network, we want to use a sequential ma-

chine as a description for a whole network. This

is also motivated by the fact that real neuron sys-

tems can be seen as physical entities which per-

form state transitions [Churchland and Sejnowski,

1992].

Now we can specify language knowledge by de-
scribing Moore machines and their state transition

function fs and output function fo. We can also

integrate fs and fo to a function f : I�S ! O�S.
Then f corresponds for instance to the transfor-

mation within a SRN network. The speci�cation

of a Moore machine could be performed by us-
ing state tables. A potential entry for the task of

assigning syntactic phrasal categories to syntactic

basic categories could be:

If input = verb and current state = prep. group

then new state = verbal group and output = ver-

bal group

It may not be possible to assign a direct in-
terpretation to a state. For this reason, simple

identi�ers may be used:

If input = verb and current state = 4

then new state = 5 and output = verbal group

It is possible to de�ne state transition tables

which assign each combination of input and cur-

rent state an output and a new state. In this
way, a symbolic synchronous sequential machine
is speci�ed. If clear regularities are known before-
hand and the number is limited, such tables can
be composed manually. However, the number of
input and state combinations quickly gets so large
that automatic procedures become necessary.
The above-mentioned state transition tables are

discrete symbolic. Therefore, they do not sup-
port gradual representations. For instance, the in-
put or the state could be ambiguous and di�erent
gradual preferences could exist for di�erent inter-
pretations. For instance \meeting" could have a
stronger preference for its syntactic interpretation
as a noun and a smaller preference for a verb form.
Consequently, we want to use preferences for the
input, output, and states of such machines. Pref-
erences of this type should be able to take values
from [0; 1]m so that multiple preferences can be
represented and integrated.
If we extend a single category (as in: if input =

verb) to an n-dimensional preference for the in-
put and an m-dimensional preference for the out-
put then we obtain a new synchronous machine
which we will call a preference Moore machine.
Now we want to describe such a synchronous se-
quential preference Moore machine which trans-
forms sequential input preferences to sequential
output preferences. We will see that simple re-
current networks or feedforward networks can be
interpreted as neural preference Moore machines.

Furthermore, we will show how symbolic and neu-
ral knowledge can be integrated quite naturally
using preference Moore machines.

38 Wermter

De�nition of a Preference Moore Machine

A preference Moore machine PM is a syn-
chronous sequential machine which is character-
ized by a 4-tuple PM = (I; O; S; fp), with I , O,
and S being non-empty sets of inputs, outputs and
states. fp : I � S ! O � S is the sequential pref-

erence mapping and contains the state transition
function fs and the output function fo. Here I ,
O and S are n-, m- and l-dimensional preferences

with values from [0; 1]n, [0; 1]m and [0; 1]l, respec-

tively.

A generalized version of a preference Moore ma-

chine is shown in �gure 11 on the left. The prefer-

ence Moore machine realizes a sequential prefer-

ence mapping, which uses the current state pref-

erence S and the input preference I to assign an

output preference O and a new state preference.

Preference mapping

Output O = [0,1]m

Input I = [0,1]n

States

 S = [0,1]l AAA
AAA

Output

Input

Fig. 11. Neural preference Moore machine and its relationship to a SRN network

Now we describe a new technique of extracting
the knowledge within a recurrent network in the
form of a transducer. A symbolic transducer can
be extracted from our recurrent network which
assigns to each input vector of basic syntactic
categories a new output vector of phrasal cate-
gories depending on the previous context. In our
network, the internal state and the context were
represented by a three-dimensional vector. For

simplicity, each strict symbolic interpretation of
a three-dimensional vector can take 23, that is 8

states. In order to acquire a symbolic interpre-
tation of the network, we presented all patterns
from the training set and stored the internal state
vectors at the hidden layer of the network. For
each output vector and for each state vector the
next corner preference was determined using the
Euclidean distance metric. Thus the Euclidean
distance metric assigned one of three symbolic ab-
stract syntactic phrase categories to each output

vector and one of eight state number identi�ers to
each state vector.

Knowledge Extraction from Transducer Neural Networks 39

101

000 100

001

010 110

111011

n:ng

r:pg

v:vg

d:ng

d:ng

n:ng

r:pg

u:ng
d:ng

n:ng

n:ng

d:pg

j:pgn:pg

v:vg

d:ng

a:ng
a:pg

j:ng
n:ng

v:vg

v:vg

r:pg v:vg
u:ng

r:pg

n:ng

n:ng

d:ng
u:ng

n:ng

r:pg
a:pg

v:vg
v:vg

u:ng

Fig. 12. Transducer extraction from a recurrent network for the example sentence \That (u:ng) is (v:vg) the (d:ng)

Thursday (n:ng) after (r:pg) Easter (n:ng)".

Figure 12 shows the knowledge learned by the
network as an extracted symbolic transducer. The
corner nodes represent the eight strict states, the
center node represents the start state of the trans-
ducer. At the edges we �nd the symbols for the
single transductions. Input and output categories
are separated by a colon, e.g. d : ng means that -
starting from the source state of this edge - a de-
terminer preference d is assigned to a noun group
preference ng and the transduction is made to the
end state of this edge. In the extracted trans-
ducer we can see some clear regularities at certain
states. For instance, the transductions to state
100 are primarily responsible for the assignments
to the prepositional group pg. Other examples
are the transductions to state 010 and to state

000, which are primarily responsible for the ver-

bal group (vg) assignment. Furthermore, �gure 12

shows the example transductions for the sentence

\That is the Thursday after Easter". Beginning

with the start state at the center, we see the trans-

duction u : ng for the word \That" which assigns

the noun group ng to the pronoun u. Then, v : vg

assigns a verb group vg to the verb \is". Then the

transductions d : ng n : ng assign the noun group

ng to \the Thursday". Finally the transductions

r : pg n : pg assign the prepositional group pg

to the sequence \after Easter". Di�erent abstract

syntactic categories (ng, pg) can be assigned to

the same category (n) depending on the learned

previous context.

40 Wermter

101

000 100

001

010 110

111011

n:ng

r:pg

v:vg

d:ng

d:ng

n:ng

r:pg

u:ng
d:ng

n:ng

n:ng

d:pg

j:pgn:pg

v:vg

d:ng

a:ng
a:pg

j:ng
n:ng

v:vg

v:vg

r:pg

v:vg
u:ng

r:pg

n:ng

n:ng

d:ng
u:ng

n:ng

r:pg
a:pg

v:vg
v:vg

u:ng

Fig. 13. Transducer extraction from a recurrent network for the example sentence \I (u:ng) thought (v:vg) in (r:pg) the

(d:pg) next (j:pg) week (n:pg)".

More detailed (less detailed) transducers can

be obtained if the state and output vectors are

mapped to more (fewer) nodes. Thus, the general

abstraction level of such a symbolic transducer

can be quite variable. The symbolic transducer

represents an abstraction of the detailed network

knowledge but this abstraction also hides some of

the numerical complexity and allows a direct sym-

bolic interpretation which provides a summary of

the network behavior.

To give an example, �gure 13 shows the trans-

ductions for the example sentence \I thought in

the next week". Beginning with the start state

at the center, we see the transduction u : ng

for the word \I", which assigns the noun group

ng to the pronoun u. Then, v : vg assigns a

verb group vg to the verb \thought". Finally

the transductions r : pg d : pg j : pg n : pg

assign the prepositional group \pg" to the word

sequence \in the next week". One advantage of

this transducer extraction is the higher abstrac-

tion level used for the representations of the recur-

rent network which leads to a better understand-

ing of its function. The original network contains

more detailed knowledge in the numerical weights

and activations, but it is not possible to see the

declarative sequential symbolic knowledge which

this network represents. The extraction of a sym-

bolic transducer allows a better understanding of

the learned sequential knowledge which is repre-

sented in a more explicit manner.

Knowledge Extraction from Transducer Neural Networks 41

8. Discussion and Analysis

8.1. Comparison of knowledge extraction tech-

niques

There has been some previous work on using indi-
vidual techniques in isolation for interpreting neu-

ral networks and extracting structural knowledge
from them. In this paper, we have analyzed �ve

such di�erent techniques using the same trained
network in order to interpret the network knowl-

edge. Such extensive comparisons of detailed net-
work knowledge are needed in order to gain a

better understanding of the knowledge extraction

represented in neural networks.
We have also introduced two new techniques

here: dynamic learning analysis and transducer
extraction. Dynamic learning analysis examines

the formation and development of categories over
time during learning. Thus, it provides a much

deeper understanding of how the neural network
arrives at its learned representation. Transducer

extraction was developed to represent the sequen-
tial processing in a recurrent network at a higher

level of abstraction.

In general, we found that di�erent interpre-
tation techniques provide di�erent views of the

knowledge contained in a neural network. Thus,
there is not a single best technique for all di�er-

ent aspects of knowledge extraction. The use of
a particular technique depends rather on the re-

quirements of the interpretation. In table 2, we
illustrate and summarize the general properties of

the �ve di�erent techniques.

Dynamic Learning Analysis (DLA) is based on
the output representations and provides a high

level of understanding based on these known out-

put representations. This technique is easy to

interpret and can be used with other network
types. On the other hand, it does not particularly

support recurrent networks, symbolic integration,
and
exible knowledge structuring. Furthermore,

structural relationships cannot be extracted.
Transducer extraction (TE) is a new technique

which uses output representations as well as in-

ternal activations. The main advantages of this
technique are the high level of understanding in

the form of an extracted symbolic transducer, the
speci�c support for the sequentiality of recurrent

networks and the possibility for extracting struc-

tural relationships. Such an extracted transducer

can be integrated with other symbolic knowledge,

e.g. other coded symbolic transducers. Further-

more, di�erent transducers can be generated with

exibility, based on the number of states used in

the internal activation layer. This leads to a rel-

atively straightforward interpretation of the net-

work involved compared to the other techniques,

but it also requires the additional e�ort of extract-

ing this symbolic transducer from the internal ac-

tivations and the output representations.

If we compare DLA and TE with WA, HAA,

and CAA, we can see that DLA and TE are tech-

niques that speci�cally provide high level interpre-

tations for dynamic learning and processing. We

argue that WA, HAA, and CAA are techniques

with a tendency towards a general, detailed, but

low-level interpretation. DLA and TE, however,

are techniques for specialized, high-level, dynamic

interpretation. Focusing on output interpreta-

tions and the dynamics of recurrent networks pro-

vides a new level of understanding. Whereas a lot

of previous work has focused on low-levels of in-

terpretation, we believe that in the future, higher

levels of interpretation and knowledge extraction

will be required.

8.2. Related work on transducer extraction and

related work

Finite state automata and transducers have been

widely used in various forms within traditional

symbolic processing; e.g. [Hopcroft and Ullman,

1979]. Basically, automata and transducers are al-

ways in a certain context state and they analyze a

certain word (symbol). Then they move to a new

state and potentially generate a new word (sym-

bol). By using changing states, it is possible to

encode the sequential context.

Although �nite automata or regular languages

are not suÆcient to describe all possible con-

structions of natural language completely (see e.g.

[Winograd, 1983]), automata still constitute a cen-

tral minimal requirement for the representation

of natural language. Thus, they occupy the low-

est level in the Chomsky hierarchy of languages

[Hopcroft and Ullman, 1979]. Furthermore, it is

possible to design eÆcient realizations of �nite au-

tomata for di�erent domains [Kaplan, 1995], e.g.

42 Wermter

Table 2. Comparison of di�erent knowledge extraction techniques: Dynamic Learning Analysis (DLA), Weight Analy-

sis (WA), Hierarchical Activation Analysis (HAA), Component Activation Analysis (CAA), Transducer Extraction (TE).

Further abbreviations: Activations/Weights/Outputs and Low/Medium/High.

DLA WA HAA CAA TE

Network representations used O W A A AO

General level of understanding H L M M H

Speci�c support for recurrent networks L L L L H

Degree of structural relationships L L M M H

Integration with symbolic knowledge L L M M H

Flexibility in level of knowledge structuring L L M M H

Computational e�ort L L M M M

Easiness of interpretation H L M M H

Generality and portability to other networks H H H H M

for morphology, lexicon access, information ex-

traction from sentences, syntactic tagging, etc.

Recurrent networks have the potential to learn

a sequential preference mapping fp : I�S ! O�S
automatically, based on input and output exam-

ples (see �gure 11), whereas traditional Moore

machines or Fuzzy-Sequential-Functions [Santos,

1973] involve manual encoding. It has been re-

cently illustrated how SRN networks can emulate

each symbolic Moore machine and each �nite au-

tomaton [Kremer, 1995, Kremer, 1996]. It has

also been shown however [Goudreau and Giles,

1995, Goudreau et al., 1994] that a recurrent net-

work with only a single input layer, one context

layer, and one output layer, the so-called Single-

layer-�rst-order-network, is not suÆcient for the

realization of arbitrary �nite automata.

In natural language processing, representations

have to be at least as powerful as �nite au-

tomata. Consequently, Single-layer-�rst-order-

networks are not appropriate, which is why we

have used SRN networks here. These recurrent

networks contain �nite transducers as a special

case, but also support much more powerful prop-

erties based on their gradual m-dimensional pref-

erence representations. For instance, it could be

shown that SRN networks can emulate certain re-

stricted properties of a pushdown automaton, in

particular the recursive representation of struc-

tures with a limited depth [Elman, 1991, Wiles
and Elman, 1996].

Apart from traditional symbolic regular rep-
resentations, gradual and learned representations
can also be represented. Furthermore, the number
of input, state, and output preferences is not nec-
essarily �nite. Therefore, neural preference Moore

machines are more powerful than �nite transduc-
ers. Our recurrent neural networks can be seen as
learning n � m Fuzzy-transducers, thereby aug-
menting a simple �nite symbolic transducer with
respect to learning within a gradual preference

space. From this perspective, symbolic knowledge
is a special abstract region in a neural preference
space.
An important line of research on automata and

recurrent networks has been reported in [Giles
et al., 1992, Goudreau and Giles, 1995, Tino et al.,
1995]. Giles and colleagues studied both �nite
state automata and neural networks, but there are
substantial di�erences with our research. They

started often with a known �nite state automaton,
which was used to generate sequences for it. Then
these sequences were used for training a second-
order neural network. Using a partition algorithm,
a �nite state automaton was extracted from the

network activations, minimized and compared to
the original known �nite state automaton. In this
way, Giles and colleagues could study the compu-
tational properties of the extraction particularly
well, but the �nite state automata also frequently

relied on relatively simple 1/0 sequences.

Knowledge Extraction from Transducer Neural Networks 43

Our motivation and methodology is di�erent

from theirs in several respects. We assume that

the initial �nite state automaton or transducer is

not known. Especially for real-world problems,

the interesting case is the one where such an au-

tomaton is not known in advance. Whereas it

is interesting for comparison and sequence gen-

eration, generating sequences with a �nite state

automaton already introduces certain regularities

into the training set. Thus, sequence generation

has an important in
uence on the learning behav-

ior, something which we want to rule out. In

fact, we are more interested in situations where

we do not know the machine which has to be ex-

tracted. Especially with noisy real-world learning

data, the underlying regularities may be quite dis-

parate from regularly generated sequences.

Furthermore, the task of our networks is quite

di�erent. The second-order networks employed by

Giles and colleagues are trained for recognition.

The output layer represents state representations

which can be fed back to the input layer at the

next step. Our recurrent networks perform an as-

signment task, where a sequence of inputs is asso-

ciated with a sequence of outputs. We are not de-

termining whether a certain sequence belongs to a

certain automaton, but what the simple
at struc-

ture of this sequence is. That is, we are interested

in transducer extraction rather than recognizer ex-

traction. In general, there are no designated �nal

states in our networks, since the network - and the

extracted symbolic transducer - produce output

as long as input is provided. This transducer be-

havior is therefore quite di�erent from the recog-

nition performance reported in [Giles and Omlin,

1993], which is based on acceptors for arti�cial

languages.

9. Conclusion

The main contribution of this paper is a par-

ticularly broad analysis of knowledge extraction

for recurrent networks. In addition, we pro-

pose dynamic learning analysis and transducer ex-

traction as two new dynamic interpretation tech-

niques. Dynamic learning analysis provides a

better understanding of how the network learns,

while transducer extraction provides a better un-

derstanding of what the network represents. Af-

ter learning, a conservative \lazy learning" strat-
egy leads to connectionist representations which
can be described as symbolic transducers. These
transducers allow for a much better interpretation
of the sequential network knowledge compared to
the standard analysis using hierarchical cluster-
ing or Hinton diagrams. Weight analysis, cluster
analysis, and principal component analysis are de-
tailed but static. In contrast, our new method
for extracting symbolic transducers can describe
the learned classi�cation performance much bet-
ter, since transducer extraction considers the se-
quential character of the learned representations
in a recurrent network and allows a better sym-
bolic inspection. Possibilities for direct integra-
tion with symbolic classi�ers can be explored in
future work. We conclude that dynamic learn-
ing analysis and transducer extraction have a lot
of potential for improved knowledge structuring
based on recurrent networks.

References

[Abe et al., 1993] Abe, S., Kayama, M., Takenaga, H.,

and Kitamura, T. (1993). Extracting algorithms from

pattern classi�cation neural networks. Neural Networks,

6(5):729{735.

[Andrews and Diederich, 1996] Andrews, R. and

Diederich, J. (1996). Rules and Networks. Queensland

University of Technology, Brisbane, Australia.

[Booth, 1967] Booth, T. L. (1967). Sequential Machines

and Automata Theory. John Wiley, New York.

[Churchland and Sejnowski, 1992] Churchland, P. S. and

Sejnowski, T. J. (1992). The Computational Brain. MIT

Press, Cambridge, MA.

[Craven, 1996] Craven, M. W. (1996). Extracting Com-

prehensible Models from Trained Neural Networks. PhD

thesis, University of Wisconsin-Madison. PhD Thesis.

[Elman, 1991] Elman, J. L. (1991). Distributed repre-

sentations, simple recurrent networks, and grammatical

structure. Machine Learning, 7:195{226.

[Elman, 1995] Elman, J. L. (1995). Language as a dynam-

ical system. In Port, R. F. and van Gelder, T., editors,

Mind as motion: explorations in the dynamics of cog-

nition, pages 195{225. MIT, Cambridge, MA.

[Elman et al., 1996] Elman, J. L., Bates, E. A., Johnson,

M. H., Karmilo�-Smith, A., Parisi, D., and Plunkett, K.

(1996). Rethinking Innateness. MIT Press, Cambridge,

MA.

[Giles et al., 1992] Giles, C. L., Miller, C. B., Chen, D.,

Chen, H. H., Sun, G. Z., and Lee, Y. C. (1992). Learn-

ing and extracted �nite state automata with second-

order recurrent neural networks. Neural Computation,

4(3):393{405.

[Giles and Omlin, 1993] Giles, C. L. and Omlin, C. W.

(1993). Extraction, insertion and re�nement of symbolic

44 Wermter

rules in dynamically driven recurrent neural networks.

Connection Science, 5:307{337.
[Gorman and Sejnowski, 1988] Gorman, R. P. and Se-

jnowski, T. J. (1988). Analysis of hidden units in a

layered network trained to classify sonar targets. Neu-

ral Networks, 1:75{89.
[Goudreau and Giles, 1995] Goudreau, M. W. and Giles,

C. L. (1995). On recurrent neural networks and repre-

senting �nite-state recognizers. In Proceedings of the

Third International Conference on Neural Networks,

pages 51{55.
[Goudreau et al., 1994] Goudreau, M. W., Giles, C. L.,

Chakradhar, S. T., and Chen, D. (1994). First-order

vs. second-order single layer recurrent neural networks.

IEEE Transactions on Neural Networks, 5(3):511{513.
[Hallam, 1995] Hallam, J., editor (1995). Hybrid Prob-

lems, Hybrid Solutions | Proceedings of the 10th Bi-

ennial Conference on AI and Cognitive Science (AISB-

95), Amsterdam. (SheÆeld, UK), IOS Press.
[Hinton, 1986] Hinton, G. E. (1986). Learning distributed

representations of concepts. In Proceedings of the 8 th

Meeting of the Cognitive Science Society.
[H�olldobler, 1990] H�olldobler, S. (1990). A structured con-

nectionist uni�cation algorithm. In Proceedings of the

National Conference of the American Association on

Arti�cial Intelligence 90, pages 587{593, Boston, MA.
[Hopcroft and Ullman, 1979] Hopcroft, J. and Ullman, J.

(1979). Introduction to Automata Theory, Languages,

and Computation. Addison Wesley, Reading, MA.
[Kaplan, 1995] Kaplan, R. (1995). Finite state technology.

In Cole, R. A., Mariani, J., Uszkoreit, H., Zaenen, A.,

Zue, V., Varile, G., and Zampolli, A., editors, Survey

of the State of the Art in Human Language Technology,

pages 419{422. NSF, EU.
[Kohavi, 1970] Kohavi, Z. (1970). Switching and Finite

Automata Theory. McGrawHill, New York.
[Kremer, 1995] Kremer, S. C. (1995). On the computa-

tional power of Elman-style recurrent networks. IEEE

Transactions on Neural Networks, 6(4):1000{1004.
[Kremer, 1996] Kremer, S. C. (1996). A theory of gram-

matical induction in the connectionist paradigm. Tech-

nical Report PhD dissertation, Dept. of Computing Sci-

ence, University of Alberta, Edmonton.
[Kurfe�, 1991] Kurfe�, F. (1991). Uni�cation on a connec-

tionist simulator. In Kohonen, T., M�akisara, K., Simula,

O., and Kangas, J., editors, Arti�cial Neural Networks,

pages 471{476. North-Holland.
[Medsker, 1995] Medsker, L. R. (1995). Hybrid Intelligent

Systems. Kluwer Academic Publishers, Boston.
[Omlin and Giles, 1996] Omlin, C. W. and Giles, C. L.

(1996). Extraction of rules from discrete-time recurrent

neural networks. Neural Networks, 9(1):41{52.
[Santos, 1973] Santos, E. S. (1973). Fuzzy sequential func-

tions. Journal of Cybernetics, 3(3):15{31.
[Shavlik, 1994] Shavlik, J. (1994). A framework for com-

bining symbolic and neural learning. In Honavar, V.

and Uhr, L., editors, Arti�cial Intelligence and Neural

Networks: Steps towards principled Integration, pages

561{580. Academic Press, San Diego.

[Shields, 1987] Shields, M. W. (1987). An Introduction

to Automata Theory. Blackwell Scienti�c Publications,

London.

[Sperduti et al., 1995] Sperduti, A., Starita, A., and

Goller, C. (1995). Learning distributed representations

for the classi�cations of terms. In Proceedings of the In-

ternational Joint Conference on Arti�cial Intelligence,

pages 494{515, Montreal.

[Sun, 1995] Sun, R. (1995). Schemas, logics and neural

assemblies. Applied Intelligence, 5:83{102.

[Tino et al., 1995] Tino, P., Horne, B. G., Giles, C. L.,

and Collingwood, P. C. (1995). Finite state machines

and recurrent neural networks. Technical Report CS-

TR-3396, University of Maryland, College Park.

[Wermter, 1995] Wermter, S. (1995). Hybrid Connection-

ist Natural Language Processing. Chapman and Hall,

Thomson International, London, UK.

[Wermter, 1998] Wermter, S. (1998). The hybrid approach

to arti�cial neural network-based language processing.

In Dale, R., Moisl, H., and Somers, H., editors, A Hand-

book of Natural Language Processing. Marcel Dekker.

[Wermter, 1999] Wermter, S. (1999). Preference moore

machines for neural fuzzy integration. In Proceedings

of the International Joint Conference on Arti�cial In-

telligence, Stockholm.

[Wermter and L�ochel, 1996] Wermter, S. and L�ochel, M.

(1996). Learning dialog act processing. In Proceedings

of the International Conference on Computational Lin-

guistics, pages 740{745, Copenhagen, Denmark.

[Wermter and Meurer, 1997] Wermter, S. and Meurer, M.

(1997). Building lexical representations dynamically us-

ing arti�cial neural networks. In Proceedings of the In-

ternational Conference of the Cognitive Science Society,

pages 802{807, Stanford.

[Wermter et al., 1996] Wermter, S., Rilo�, E., and

Scheler, G. (1996). Connectionist, Statistical and Sym-

bolic Approaches to Learning for Natural Language Pro-

cessing. Springer, Berlin.

[Wermter and Weber, 1997] Wermter, S. and Weber, V.

(1997). SCREEN: Learning a
at syntactic and se-

mantic spoken language analysis using arti�cial neural

networks. Journal of Arti�cial Intelligence Research,

6(1):35{85.

[Wiles and Elman, 1996] Wiles, J. and Elman, J. (1996).

Learning to count without a counter: A case study of

dynamics and activation landscapes in recurrent net-

works. In Proceedings of the AAAI Workshop on Com-

putational Cognitive Modeling: Source of the Power,

Portland, Oregon.

[Winograd, 1983] Winograd, T. (1983). Language as a

Cognitive Process. Addison-Wesley, Reading, MA.

