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Abstract

In the MirrorBot project we examine perceptual processes using models of cortical assemblies and mirror neurons to explore the

emergence of semantic representations of actions, percepts and concepts in a neural robot. The hypothesis under investigation is whether a

neural model will produce a life-like perception system for actions. In this context we focus in this paper on how instructions for actions can

be modeled in a self-organising memory. Current approaches for robot control often do not use language and ignore neural learning.

However, our approach uses language instruction and draws from the concepts of regional distributed modularity, self-organisation and

neural assemblies. We describe a self-organising model that clusters actions into different locations depending on the body part they are

associated with. In particular, we use actual sensor readings from the MIRA robot to represent semantic features of the action verbs.

Furthermore, we outline a hierarchical computational model for a self-organising robot action control system using language for instruction.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, there has been much progress in

understanding the underlying perceptual and neurocognitive

processes in the brain as well as the techniques for these

studies (lesion studies, fMRI, MEG and EEG Binder et al.,

1997; Braitenberg, 1997; Dogil et al., 2002; Friedman et al.,

1998; Joliot et al.,1999; Melcher, 2000; Pulvermüller, 1999;

Taylor, 1999). Recent advances in MEG and fMRI

techniques have clarified the dynamics of these processes,

but it is still a long way for translating these results directly

into computational architectures.

Other work has suggested the grounding of visual and

auditory perception in neural representations (Dorffner &

Prem, 1993; Feldman et al., 1996; Harnad, 1990).

However, these results have not been integrated with

behavioural studies to any great extent. Recently, a class

of neurons has been found in the rostral part of the ventral

premotor cortex (area F5) in monkeys that are active both

when a monkey handles an object and when it observes an

experimenter performing similar actions (Rizzolatti &

Arbib, 1998). More recently, PET studies have implicated

these ‘mirrorneurons’ in the gesture recognition system of

humans. This system involves Broca’s area, a language

area in humans, which is generally believed to be the

human homologue of area F5 in monkeys. Therefore, we

explore the role of mirror neurons and cell assemblies for

multimodal integration of action, vision, and language in

the MirrorBot project.

Recently, there has been a growing interest in learning

for robotics. However, these approaches rarely use neural

networks or language instruction. Furthermore, the robots

are restricted in their general autonomous behaviour and

only learn what has been preprogrammed. Even the

‘Talking Heads’ approach that incorporates the emergence

of language in robots (Steels, 1998) gives little consider-

ation to neuroscience-inspired learning in humans.

Some robots like the tour-guide robot Rhino (Burgard

et.al., 2000) have been quite robust in terms of their

localization and navigation behaviour; however, they do not

interact via language. Although the conversation office

robot jjj-2 (Asoh et al., 1997) can be instructed to navigate

to certain landmarks and the Minerva tour-guide (Thrun

et al., 1999) interacts by using simply preprogrammed

speech, they are restricted in their ability to learn.

Furthermore, the Kismet interactive robot (Breazeal &

Scassellati, 1999) can recognise and represent emotions

using a static sophisticated head but does not understand or

generate real language.
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This paper for robot control using language incorporates

some neuroscience evidence related to the architectural and

processing characteristics of the brain (Wermter, Austin, &

Willshaw, 2001). In particular it focuses on the neurocog-

nitive evidence on cortical assemblies and regional

modularity for language areas in the brain (Pulvermüller,

2003).

2. Regional distributed modularity

Various distributed neural networks in diverse regions in

the brain carry out processing in a parallel distributed

manner to perform specific cognitive functions (Reggia,

Shkuro, & Shevtsova, 2001). The brain consists of a group

of collaborating networks, none of which can deal with a

complex task alone (Wermter et al., 2001).

For over a century researchers have considered how

language is processed by the brain. As a response therefore

there are various models of modular language processing.

The classical model of language processing comes from

lesion studies in the brain and is based on Broca’s and

Wernicke’s language modules linked via the arcuate

fasciculus (Bear, Connors, & Paradiso, 1996).

However, brain regions that are involved in language

also include those outside the traditional language areas

(Gazzaniga, Ivy, & Mangun, 1998; Purves, 1997). For

instance, speech comprehension and information recollec-

tion has been observed to involve four regions in the left

hemisphere of the cerebral cortex (Binder et al., 1997).

Semantic language operations involve the superior temporal

sulcus, middle temporal gyrus, angular gyrus and lateral

frontal lobe (Friedman et al., 1998).

Recently, cortical assemblies have been identified in the

cortex that activate in response to the performance of motor

tasks at a semantic level (Pulvermüller, 1999; Rizzolatti, &

Arbib, 1998). This evidence supports that these neurons are

involved in actions, observing actions and communicating

actions. The neurocognitive evidence of Pulvermüller

(1999, 2002 and 2003) supports that cell assemblies are

activated in different regions of the brain dependent on the

word type being processed. This evidence offers the basis

for our approach. Pulvermüller 1999 noted that activation

was found in both hemispheres of the brain for content

words and for vision words in the perisylvian and in the

parietal, temporal and/oroccipital lobes. However, function

words that have a grammatical role were limited to the

perisylvian cortex. For action words that involve moving

one’s own body the perisylvian cell assemblies were

associated with motor, premotor, and prefrontal cortices.

Assemblies that depict vision words were found in the

perisylvian and visual cortices in parietal, temporal and/or

occipital lobes.

It is important to relate the neurons that represent the

word with those neurons associated with perception and

actions that reflect the semantic information of a word.

Hence, if a word is repeatedly presented with a stimulus, the

representation of this stimulus is incorporated into the

representation for the word. For content words the semantic

features that influence the cell assemblies come from

various modalities and include the complexity of activity

performed, facial expression or sound, the type and number

of muscles involved, the colour of the stimulus, the object

complexity and movement involved, the tool used, and

whether the person can see herself doing this activity.

When examining the processing of action verbs that

relate to the leg, face and arm Pulvermüller, Hare, and

Hummel (2000) found that cell assemblies are associated

through semantic information with the appropriate body

part. They found that the average response times for lexical

decisions was faster for face-associated words than for arm-

associated words and the arm-associated response times

faster than the leg ones. There was a significant difference

for the prefrontal region and occipital regions and above the

motor and premotor cortex.

The prefrontal area was found to be associated mainly

with arm verbs and the occipital visual areas for face verbs.

Furthermore, it was noted by Rizzolatti, Fogassi, and

Gallese, (2001) that when subjects were required to observe

actions made by the mouth, hand and foot that the foot was

located dorsally and mouth and hand ventrally in the brain.

This neurocognitive evidence motivates our approach for

self-organising associative memory in multiple regions of

the brain.

3. Self-organisation

Self-organising networks offer an unsupervised associ-

ative memory approach (Fig. 1). Self-organising networks

consist of an input and an output layer, with every input

neuron linked to all the neurons in the output layer

Fig. 1. Architecture of a self-organising network: the darker the neuron on

the output layer the higher the activation.
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(Kohonen, 1997). The output layer creates a topographical

representation that clusters similar inputs together in a two-

dimensional neural layer.

A typical self-organising network algorithm has an input

vector represented as i ¼ ½i1; i2;…; in�: The input vector is

presented to every output unit of the network. The weights

between the links in the network are represented as

wj ¼ ½wj1;wj2;…;wjn� ð1Þ

where j identifies unit j in the output layer and n is the nth

element of the input. The output of unit j is the weighted

sum of its inputs, given by:

oj ¼
X

wjkik ¼ wj·i ð2Þ

The weights are usually initialised randomly and hence a

unit of the network will react more strongly than others to a

specific input representation. The weight vector of this unit

as well as the eight neighbouring units are altered based on

the following update rule:

Dwjk ¼ aðik 2 wjkÞ and wjkðt þ 1Þ ¼ wjkðtÞ þ Dwjk ð3Þ

where a is the learning rate that is usually set between 0.2

and 0.5.

4. Architecture

A structured architecture of self-organising networks is

under development to perform robot control based on

associating language and actions. This system learns to

associate the semantic features that are found in the sensor

readings that represent the action with a representation of

the word.

As can be seen at the bottom of Fig. 2 the

architecture firstly contains a self-organising network to

associate the action sensor readings with the appropriate

body part by clustering the verbs in different regions. At

the next processing level there is a self-organising

network for each body part that uses the sensor reading

vectors to associate the actual action verbs with different

regions. To the right in the architecture, the words that

are represented using their phonemes are clustered in a

self-organising network. The upper-most self-organising

network associates the actions with their appropriate

words. Hence, by associating the action representation

with the word the robot can describe the action with a

word when it receives only the action representation and

vice versa perform the action when it is given the word

only.

In this system the input is used to produce the output by

recreating the action from the sensor readings. The sensor

readings provide information on the action such as the

velocity of the separate wheels, the gripper activities and

how the constituent subactions relate to the states of sensors

such as break-beam and table sensors.

If the robot receives the ‘put’ action sensor reading

representation, it would be introduced into the trained body

part network and activate the hand region of the output

layer. The hand self-organising network would then position

the sensor readings input in the put region of the output

layer. As the robot is describing the word there is no

necessary input from the word self-organising network into

the association self-organising network. However, as the

network has previously learned to associate this action with

the appropriate word the put region of the network is

activated. The robot will then state using its language

synthesis that the action semantic features provided are

those for put. This describes the pathway from the internal

action representation via the association area to the

language description. In a similar, but opposite pathway

the word input representation can lead via the association

area to the sensory robot action.

This approach offers some brain-inspired regional

modularity by having multiple self-organising networks,

each performing a subtask of the overall task. These

networks are linked in a distributed overall memory

organization. Furthermore, at the higher functional level

as can be seen from Fig. 2, this architecture includes

components that are analogous to brain regions at a higher

level. For instance, the SOMs that take the action

representations and cluster these are related to the sensory

Fig. 2. Overall architecture based on modular distributed and hierarchical

self-organising memory.
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motor cortical areas of the brain. The approach also takes

into account the neurocognitive evidence of Pulvermüller

et al. in that cell assemblies in different regions are

associated with specific action verbs as a functional unit,

with the association being based on the action verbs

relationship with the appropriate body part.

This architecture links some concepts of the mirror

neuron theory. The relationship of mirror neurons to

language was pointed out by Rizzolatti and Arbib (1998)

who found that neurons located in the F5 area of a primate’s

brain were activated by both the performance of the action

and its observation. The recognition of motor actions comes

from the presence of a goal and so the motor system does not

solely control the movement (Gallese & Goldman, 1998).

The role of these mirror neurons is to associate action

representations with vision or language representations. The

mirror neuron system was a critical discovery as it shows the

role played by the motor cortex in action depiction

(Rizzolatti, Fogassi, & Galles 2001). By using the sensor

readings as input the mirror neuron concept is considered

since the understanding of the action can come from either

performing the action or a stored representation is linked to

observing the action.

5. Self-organisation on the robot

In our experiments we examine the body parts self-

organising map, and the head, hand and leg self-organising

maps of the modular system. In our previous study (Elshaw

& Wermter, 2001) it was possible to identify that a self-

organising network was able to cluster action verbs related

to body parts. However, this approach relied upon

subjective encodings for the applicable features for the

action verbs. In order to have greater objectivity and to

incorporate self-organising maps into a robot control

system, sensor readings were taken from the MIrror-neuron

Robot Agent (MIRA) (Fig. 3). Now sensor readings

represent semantic features to describe the action verbs

such as the degree of motion and object manipulation. We

will now describe the experimental context for testing the

architecture.

5.1. Experimental method

The MIRA robot is based on a PeopleBot platform, and

has a PC, microphone and speakers and a PC104 audio

board. Wireless communication between the robot and a

computer is used. The robot has an adjustable 120-degree

pan-tilt camera and fixed-field IR sensors to sense the

underside of the table. The robot also has a 2-degree gripper

that contains break-beam sensors to detect the object. By

using MIRA we take advantage of speech, motion and

vision interfaces and explore the development towards a

novel neural architecture.

MIRA was set up to perform various actions that are

associated in humans with the leg, head or hand. The leg

verb actions were ‘turn left’, ‘turn right’, ‘forward’ and

‘backward’; head action verbs were ‘head up’, ‘head down’,

‘head right’ and ‘head left’ and finally the hand verbs were

‘pick’, put, ‘lift’, ‘drop’ and ‘touch’. One action can be

made of several basic actions. For instance, the hand verb

action pick included the following subactions (i) slowly

move forward to the table; (ii) tilt camera downwards to see

table, (iii) lift gripper to table height; (iv) open gripper; (v)

close gripper on object; (vi) stop forward motion; and (vii)

lift gripper. This sequence of subactions corresponds in

principle (although not in detail) to motor schemata since a

complex action is represented as a sequence of basic actions.

Sensor readings were taken for such sequences of basic

actions.

In order to provide sufficient and varied training and

test data the actions were repeated 20 times (15 training

and five test) under diverse conditions. For instance, the

speed the robot was travelling at and the angle that the

camera was tilted or panned to were varied. The sensor

readings were taken 10 times a second while MIRA

performed these actions including the state of the gripper,

the velocity of the wheels and the angle that the robot’s

camera was at. The full list of the sensor readings is given

in Table 1.

To reduce the size of the input for the self-organising

network to a manageable level, 10 sets of the readings were

taken over time to represent the action. This was achieved

by taking the first, last and eight equi-distant sets of readings

and combining them to create a single input for a sample.

Preprocessing was performed on the data to make it suitable

for introduction into the neural networks. As self-organising

networks require the input values to be represented

numerically ‘yes’ was represented as 1 and ‘no’ 0. The

gripper break-beam state values were represented as ‘no

beams broken’ 0.25, ‘inner broken’ 0.5, ‘outer broken’ 0.75

and ‘both broken’ 1.

There was a need to normalise the sensor readings for

such variables as velocity of left wheel, velocity of right

wheel, x coordinate of robot, y coordinate of robot, and the

pan and tilt of the camera. Normalisation was done by taking

the sensor readings for the specific feature for all samples

across the 10 sets of readings and positioning the valuesFig. 3. The MIRA performing the ‘pick’ action.
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between 0 and 1 dependent on its relative size. For example,

the x coordinate values were normalised using the Eq. (4).

x 2 minðxÞ

maxðxÞ2 minðxÞ
for all x ð4Þ

5.2. Unsupervised learning

For the self-organising network to cluster actions based

on the appropriate body part the input layer had 120 units,

one for each of the preprocessed sensor readings. The output

layers had various sizes (from 8 by 8 units to 13 by13 units)

and the networks were trained between 50 and 500 epochs at

intervals of 50 epochs. Fig. 4 provides an example self-

organising network showing the input and output for a ‘put’

action training. The number of training and test samples for

each of the 13 actions were 15 and 5, respectively. There

were 260 samples in total, 195 for training and 65 for

testing. The location of each of the training and test samples

on the self-organising maps were identified based on the

units that had the highest activation.

For the hand, head and leg self-organising networks the

inputs were the preprocessed sensor readings, the output

layers were varied between 8 by 8 units and 10 by 10 units

and they were trained for between 25 and 200 epochs.

However, the networks received only sensor readings input

for the appropriate body part.

6. Results and discussion

When considering self-organising networks for cluster-

ing the actions into their body parts with output layers of

between 8 by 8 and 11 by 11 units the networks were only

able to produce a split between hand actions and the other

two classes. These networks were not able to cluster the leg

and head actions into different regions. However, it did

indicate an ability to produce a split between simple actions

such as ‘forward’ or ‘head right’, and more complex actions

such as ‘put’ or ‘pick’.

Figs. 5 and 6 show a self-organising network that was 12

by 12 units before training. Before training, it was not

possible to differentiate between the hand and leg action

samples. Over 90% of the test and training samples for the

head actions had the highest activation for the unit that also

had the highest activation for 80% of the leg actions.

Furthermore, the hand actions were spread out and did not

cluster into a single region. However, once this network

architecture was trained for 50 epochs there was a clear

clustering into the three body parts (Figs. 7 and 8). The hand

action words such as ‘pick’, ‘touch’, ‘lift’ were at the bottom

of the training and test output layers in the hand body part

region, with the head actions slightly below and to the right

of the leg region. Although one unit within the head region

Fig. 4. Example self-organising network showing the input and output for a

‘put’ training sample.

Fig. 5. The percentage of the training samples for the body parts that have

highest activation for each unit on a 12 by 12 units network before training.

(Black—Hand, White—Head, Grey—Leg).

Table 1

Sensor readings taken by robot during actions

Sensor reading Value

Velocity of left wheel Real number

Velocity of right wheel Real number

x coordinate of robot Real number

y coordinate of robot Real number

Break-beam state of gripper No beams broken, inner

broken, outer broken, both

broken

Gripper state Gripper fully open, closed,

between open and closed

Gripper at highest or

lowest position

No Yes

Gripper moving upwards or

downwards

No Yes

Table sensors activated No Yes

Gripper opening or closing No Yes

Pan of camera Integer

Tilt of camera Integer
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contained both head and leg action samples with the highest

activation, the percentage for head samples was much

higher on both test and training data. For the training and

test data the percentage of head action samples with the

highest activation for that unit was over 60% for training

samples and 70% for test samples. Due to the major

difference between the head and leg action percentages for

this unit, only the head percentage is shown on Figs. 7 and 8.

As can be seen from Table 2 for the training data 100% of

the hand and head fell in the appropriate region and 88% of

the leg data. For test data the percentage was even better

with 100% for hand and head and 90% for leg. It is

interesting to note that within the hand verb region there was

a good division into the actual action classes. In Figs. 7 and 8

‘pick’ was located in the lower right of the map, ‘put’ in the

lower left, ‘drop’ in the unit above ‘pick’, ‘touch’ at the top

of the hand region and most of the ‘lift’ samples were

located in a unit just below ‘touch’. For the other two classes

there was some splitting into the individual actions but not

on the scale of the hand class.

Hence, such a network can in principle realise the

findings of Pulvermüller et al. on the processing of action

verbs with different clusters representing the specific body

parts. The network was able to identify the semantic features

from the actual sensor readings for the individual action

verb classes that were specific to the appropriate body part.

These features were likely to include the degree of move,

whether there was an object involved and the type and

number of motors used.

For such an architecture on both training and test data the

clusters were in very similar positions on the output layer,

which points to the ability of the network to generalise on

data it has not seen before. When considering the percentage

of test data that fell in the regions identified by the training

data the percentages were very high. For the hand actions

100%, head actions 95% and leg actions 88% of the test data

fell into the appropriate training region.

Therefore, if the self-organising network was used in the

control of a robot it can perform successfully in an online

manner clustering semantic features of the action to the

appropriate region of the output layer.

Turning to the hand, head and leg self-organising

networks, when considering the clustering of the specific

body part actions for all three types of action, the size of

network that performed best was 8 by 8. For the hand

network the training time that produced the best clustering

was 50 epochs, for the head network it was 150 epochs and

Fig. 6. The percentage of the test samples for the body parts that have

highest activation for each unit on a 12 by 12 units network before training.

(Black—Hand, White—Head, Grey—Leg).

Fig. 7. The percentage of the training samples for the body parts that have

highest activation for each unit on a 12 by 12 units network after a training

time of 50 epochs. (Black—Hand, White—Head, Grey—Leg).

Fig. 8. The percentage of the test samples for the body parts that have

highest activation for each unit on a 12 by 12 units network after a training

time of 50 epochs. (Black—Hand, White—Head, Grey—Leg).

Table 2

Percentages for the training and test samples that were associated with the

appropriate body part clusters for the 12 by 12 units network

Body

part

Training samples

on training clusters

(%)

Test samples

on test clusters

(%)

Test samples on

training clusters

(%)

Hand 100 100 100

Head 100 100 95

Leg 88 90 88
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for the leg self-organising network it was 100 epochs. As

can be seen from Figs. 9–14 there was clear clustering into

different regions for the hand, head and leg actions. For the

hand actions on both the training and test data ‘touch’ was in

the top left corner, ‘put’ in the top right corner, ‘drop’ in the

bottom left corner, ‘pick’ in the bottom right and ‘lift’ was

in the upper center. Turning to the head self-organising

network in Figs. 11 and 12 ‘head left’ was in the upper

left region, ‘head down’ in the upper right, ‘head up’ in

lower left and ‘head right’ in the lower left region. For

the leg self-organising network ‘forward’ was in the upper

left of the map, ‘turn left’ in the upper right, ‘turn right’ in

the lower left and ‘backward’ in the lower right corner of the

map.

The good performance of the hand, head and leg

networks can be observed from Tables 3–5. For the hand

network 100% of the ‘drop’, ‘pick’, ‘lift’ and ‘touch’ and

93% of the ‘put’ training samples fell into the appropriate

Fig. 10. The percentage of the test samples for the specific hand actions that

have highest activation for each unit on a 8 by 8 units network with a

training time of 50 epochs.

Fig. 9. The percentage of the training samples for the specific hand actions

that have the highest activation for each unit on a 8 by 8 units network with

a training time of 50 epochs.

Fig. 11. The percentage of the training samples for the specific head actions

that have highest activation for each unit on a 8 by 8 units network with a

training time of 100 epochs.

Fig. 12. The percentage of the test samples for the specific head actions that

have highest activation for a each unit on a 8 by 8 units network with a

training time of 100 epochs.
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training cluster. For the test data it was 100% for all the

hand actions. For all head actions they achieved a

performance of 100%. When considering the percentage

of test data that fell into the regions identified by the

training data, the percentages for the hand and head

networks was 100%. Finally, as can be seen from Table 5

the leg actions ‘backward’ and ‘turn left’ achieved 100%

for the training samples in the appropriate training

clusters, the test samples on the test clusters and the test

samples in the training clusters. Although ‘turn right’ and

‘forward’ did not achieve 100% on all three conditions,

the performance was still reasonably good. On the training

samples on the training clusters ‘forward’ achieved 87%

and ‘turn right’ 100%, for the test samples on the test

clusters ‘forward’ achieved 100% and ‘turn right’ 80%,

and for test samples on training clusters both actions

achieved 80%.

Hence, the performance of the head, leg and hand self-

organising networks are in principle suitable for use in a

robot control system based on language instruction. This is

because it is likely, based on the clear clustering demon-

strated, that the sensor reading input will be accurately

represented and mapped to the appropriate network region.

As this location is the basis for the association between the

action and the word this will contribute to the successful

identification of the action and its description.

Table 3

Percentages for the hand training and test samples that were associated with

the appropriate clusters for the 8 by 8 units network

Hand

actions

Training samples

on training clusters

(%)

Test samples on

test clusters (%)

Test samples

on training clusters

(%)

Put 93 100 100

Drop 100 100 100

Pick 100 100 100

Lift 100 100 100

Touch 100 100 100

Table 4

Percentages for the head training and test samples that were associated with

the appropriate clusters for the 8 by 8 units network

Head

actions

Training samples

on training clusters

(%)

Test samples

on test clusters

(%)

Test samples on

training clusters

(%)

Head down 100 100 100

Head left 100 100 100

Head right 100 100 100

Head right 100 100 100

Table 5

Percentages for the leg training and test samples that were associated with

the appropriate clusters for the 8 by 8 units network

Leg

actions

Training samples

on training clusters

(%)

Test samples

on test clusters

(%)

Test samples

on training clusters

(%)

Backward 100 100 100

Turn right 100 80 80

Turn left 100 100 100

Forward 87 100 80

Fig. 13. The percentage of the training samples for the specific leg actions

that have the highest activation for each unit on a 8 by 8 units network with

a training time of 100 epochs.

Fig. 14. The percentage of the test samples for the specific leg actions that

have highest activation for each unit on a 8 by 8 units network with a

training time of 100 epochs.
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7. Conclusion

We described a model for a robot control system based

on language instructions. This model considers that cell

assemblies in different regions of the brain are used to

process action verbs based on their association with

appropriate body parts. By using self-organising networks

for each of the three body parts considered it was possible in

nearly all cases to cluster the individual actions and to

identify them. We directly used sensor readings to represent

low level semantic features. While we have not intended to

implement a full mirror neuron system in this paper, this

paper describes a self-organising approach that controls a

robot using language instructions. This approach is based on

distributed regional modularity and neurocognitive evi-

dence on clustering action verbs. Such an approach uses

sensor readings as the input to the robot and also as the basis

for the robot’s behaviour. In this sense, we have presented a

self-organising language memory for an environmentally

grounded robot.
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