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By using neurocognitive evidence on mirror neuron system concepts the MirrorBot 
project has developed neural models for intelligent robot behaviour.  These models 
employ diverse learning approaches such as reinforcement learning, self-organisation and 
associative learning to perform cognitive robotic operations such as language grounding 
in actions, object recognition, localisation and docking.  In this paper we describe 
architectures based on an associative self-organising framework which were designed to 
combine multimodal inputs of language, vision and motor programs to produce complex 
robot behaviours. 

 

1.  Introduction 
In this paper we will describe some research performed as part of the 
“biomimetic multimodal learning in a mirror neuron-based robot” (MirrorBot) 
project for neuroscience-based models for an intelligent robot.  Theories and 
experiments in neuroscience have indicated that a neuroscience-oriented 
approach for multimodal processing is promising for new computational 
techniques to associate vision, language and motor control (Pulvermuller 1999, 
Rizzolatti and Arbib 1998, Wermter et al. 2001).  In particular the neuroscience 
motivation for our models comes from the neurocognitive evidence on action 
verb processing in the brain and the mirror neuron system found in primates and 
humans.    

Neurocognitive evidence on word processing shows that cortical assemblies 
have been identified in the cortex that activate in response to the performance of 
motor tasks at a semantic level (Pulvermuller 1999, Rizzolatti and Arbib 1998, 
Hauk and Pulvermüller 2004).  The meaning of words is critical for determining 
the cortical populations or cell assemblies that form a functional unit that are 
activated to implement the cognitive task (Pulvermüller 1999, Wermter and 
Elshaw 2003).   For instance, perception words are represented by perisylvian 
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assemblies and posterior cortex, and nouns related to animals activate the 
inferior temporal or occipital cortices  (Pulvermüller 1999).  

Neurocognitive evidence on action verb processing sees a division of 
representation in the brain based on whether the action is performed by a 
specific body part (Hauk et al. 2004, Pulvermüller 1999, Pulvermüller 2001).  
Various EEG experiments on processing of action verbs were carried out to test 
this hypothesis by looking at words related to the action performed by the leg, 
arm and face/head. The differences based on different body parts for action 
verbs processing can be seen from the average response times for lexical 
decisions.  They are faster for face-associated words compared to arm-
associated words, and the arm-associated words are faster than leg-associated 
words.  Leg-words generated greater activation in the central brain region 
around the vertex, while face-words activated inferior-frontal areas, thereby 
suggesting that the relevant body part representations are differentially activated 
when words for different actions are being comprehended.  This is 
schematically depicted in Figure 1, with the light circled cell assemblies shared 
by all body types and the darker assemblies being specific to the particular body 
type. 

 

 leg-related word arm-related word face-related word  
 
Figure 1. The cell assemblies found to be associated with the processing of action words based on 
body parts (Pulvermüller 2003). 

 
Focusing on individual neurons, Rizzolatti and Arbib (1998) found two 

types of neurons located in the F5 motor cortex region of primates, the classical 
motor neurons which only respond to the performance of the action and the 
mirror neurons which respond not only when performing an action but also 
when seeing or hearing the action performed (Kohler et al. 2002, Rizzolatti and 
Arbib 1998).    

This ability to understand actions allows the observer to learn through 
imitation, to predict the actions and to act accordingly (Gallese 1998).  The 
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concepts from mirror neurons suggest that own actions, observed actions and 
language are very much interrelated since the same mirror neurons fire when 
any of these three modalities is an input. 

In response to this neuroscience evidence we have developed and will 
describe various neural models for biomimetic multimodal learning in a mirror 
neuron-based robot.  These models perform activities such as object 
localization, grounding of language in actions and robot docking.  These models 
are based on diverse learning approaches that are proposed for distinct regions 
of the brain and we will describe our overall associator approach.  Finally, we 
will consider a self-organising architecture to combine concepts from these 
neural models to produce a multimodal behaviour in a robot (Figure 2).  This 
architecture takes as inputs language, vision and actions. This architecture is 
able to associate these so that it can produce or recognize the appropriate action.  
The architecture either takes a language instruction and produces the behaviour 
or receives the visual input and action at the particular time-step and produces 
the language representation (Wermter et al. 2004). 

 
 
 
 
 
 
 
 
 
 

 
 

Associator network

 
Figure 2.  The feature extractor and associator architecture for multimodal integration. 

 
2.  Associator model for object localization 
 
Our model for associative object localisation in Figure 3 consists of a “what” 
pathway on the left, and a “where” pathway on the right (Weber and Wermter 
2003). The “what” pathway consists of an input area and a hidden area. The 
hidden area of the “what” pathway consists of two layers.  The lower layer 
receives bottom-up connections  from the input. These have been trained buW
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according to a sparse coding Helmholtz machine and represent feature detectors 
similar to Gabor functions, but also with colour sensitive elements. The depicted 
top-down weights Wtd were needed to train Wbu, but are not used further on. The 
upper layer receives a one-to-one copy of the output of the lower layer cells 
(denoted by the 3 thin arrows in Figure 3). After it receives this initial input, it 
functions as an attractor network which solely updates its activations based on 
its previous activations. Each cell receives its input from all other neurons via 
recurrent weights V22. In addition, input arrives from the laterally connected 
area of the "where" pathway via weights V23.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3. Associator model architecture. Left, the pathway of the lower visual system: below, the 
three red-, green- and blue-layers of the image, then the feature detecting cells and on top, the 
attractor cells of the “what” area. On the right, the “where” area displays the location of the object of 
interest. Small numbers denote simulated area sizes. Thick arrows denote trained weights. The two 
motor units in this simple setup control the pan- and tilt-position of the robot camera. Their weights 
W43 have been trained in an error driven fashion so that the camera focuses on the object. 
 

The “where” pathway on the right of Figure 3 consists of just one area. The 
“where” neurons are fully connected via recurrent weights V33 and in addition 
receive input from the highest “what” layer via V32. In the following, we will 
refer to all connections V22, V33, V23 and V32 collectively as , because they 
are lateral weights and  receive the same treatment, during training as well as 

latV



 5 

during activation update.  The activation update of the “where” and highest level 
“what” neurons is governed by the following equation:  

 

∑l
lat
il ))(vf(  )1( tutu li =+  ,   where f(x) = eβ x / (eβ x + n) (1) 

 
Parameters in the neuronal transfer function f are the slope β = 2 and the 
sparseness factor n = 8 which leads to little average neuronal activity, if there is 
no input. The lateral weights are trained from the bottom-up input. Their 
purpose is to memorise the incoming activities ui(t=0) as activation patterns 
which they maintain. Learning maximises the log-likelihood to generate the 
incoming data distribution by the internal activations ui(t) if Eq. (1) is applied 
repeatedly:  
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The contribution to learning can be seen in the difference term where ui(t=0)  is 
the data while ui(t) is produced through recurrent application of Eq. (1) which 
corresponds to a continuous-valued attractor basin of the attractor network. 

First, the weight matrices Wtd and Wbu were trained on small patches 
randomly cut out from natural images.  Lateral weights were then trained 
with W

latV
td and Wbu fixed. For this, within each data point (an image patch), an 

artificially generated orange fruit was placed at a randomly chosen position. The 
“where” area received a Gaussian hill of activity on the location which 
corresponds to the one in the input where the orange is presented.  
The representation of the image with an orange obtained through Wbu on the 
lower layer was copied to the upper layer cells. This together with the Gaussian 
hill on the “where” area was used as target training vector. Relaxations were 
done for four time steps, which had been discovered in empirical tests. 

Figures 4 and 5 show the relaxation of the network activities after 
initialisation with sample stimuli. In all cases, the “where” area neuron's 
activations were initialised to zero at time 0=t . The relaxation procedure 
therefore completes a pattern which spans both, the “what” and the “where” 
area, but which is incomplete at time 0=t , as can be seen in Figure 4.  

All weights in the model have been trained on the basis of real images and 
are therefore irregular. Localisation quality may vary at slightly different object 
locations within the image. The third frame in Figure 5, for example, leads to a 
blurred “where” representation. If information from the second frame would be 
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taken into account, this may be cleaned up. However, for simplicity and 
consistency with the training procedure, the algorithm processes only one frame 
at a time.  
 

 
 
Figure 4. Each row shows the network response to a color image which contains an artificially 
generated orange fruit. From left to right: the image, the reconstruction of the image via W12 (cf. 
Figure 3), the representation on the “what” area (used for the image reconstruction), the initial zero 
activities on the “where” area at time . Then the activations on the “what” and “where” areas at 

 time steps which is the relaxation time used for training. The estimated position of the orange 
on the “where” area is correct in the upper three  rows. 

0=t

4=t
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Figure 5. Localisation for real images taken from the robot camera. In each column, the top row 
shows an image, the middle row shows the response on the "what" area and lower row the response 
of the "where" area at iteration time 4=t  to the presentation of the image in the upper row.  
 
3. Associator architecture for robot docking  

 
After the successful completion of the localization associator network it was 
expanded as a learning approach to perform the docking behaviour (Weber et al.  
2004b). This extended model uses neural vision and reinforcement learning as a 
solution for robotic docking, which moves the PeopleBot robot toward a table 
so that it can grasp an object.  As the robot has a short non-extendable gripper 
and wide “shoulders” it must approach the table at a perpendicular angle so that 
the gripper can reach over it.   

Our robot selects the action which leads to the largest expected reward.  
This makes the action selection network the core part.  The model includes four 
motor neurons that are “on” depending on if the robot is to move forward, 
backward, left or right, respectively.   The peripheral vision module is trained 
before the action selection network so that it can supply the necessary visually 
obtained perception as input. 

Overall, we have three training phases: stages one and two perform the 
training for the object localization outlined above, stage three trains the weights 

 and  from the conceptual space to the critic of the motor outputs, 
respectively (Figure 6).  During training, the motor units are guided by the firing 
rate of one “value function” unit which assigns a fitness value to any state. 
Together, these four neurons are trained by reinforcement learning, in which a 
scalar reinforcement signal is given only at the end of each training action 
sequence.  The value of the signal is positive, if the robot docks at the object in 
parallel to the table, or negative, if the robot's shoulders bump into the table at 
an angle or if the object is lost out of sight.   

cW mW

The input to the action selection network is the robot's visual perceptual 
state, defined by its relative position to the target, an orange fruit at the border of 
a table as shown in Figure 7.  The localization model described in the previous 
section is used to provide the location of the object for docking.  Additional 
input to the action selection network is the robot rotation angle ϕ , supplied by 
the robot's internal odometry.   

Each trial thus constitutes a robot's experience about either reaching the 
goal or loosing the target or hitting the table.  It consists of a sequence of actions 
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and several learning steps.  The more trials have been done, the better the robot 
performs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 6  Associator network for action selection. Thick arrows denote trained weights W of which 
only the dark ones are used during performance, while those depicted bright are involved in training.  
The “what”-“where” network is the same as in Figure 3, but the object location is used here together 
with the robot angle as input to an action-critic network that learns the strategic docking manoeuvre 
by adapting Wm and Wc. The shaded part of the network uses the same learning principle as the 
associator architecture for multimodal integration, described in the next chapter. 

 
The state description (Figure 6) consists of a Gaussian covering several 

state space units simultaneously.  A critic weight  is thus updated close to 
weight if j and j' are neighbours in the state space; analogously motor 
weights .  This topological relation exploits the fact that similar states imply 
similar optimal actions and speeds up learning.  A successful example of 
simulated docking performance is depicted in Figure 7b which displays a 
successful movement.   

c
jw

c
jw '
m
ijw

The experiments described in this section of the paper have shown the 
suitability of associator models for learning robot docking behaviour.  Such 
models offer great flexibility compared to approaches for robot behaviour that 
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rely on preprogramming.  They also indicate that such models could be linked 
by an associative architecture to achieve multimodal input fusion to achieve 
complex behaviours based on a goal given as a language instruction. 

 
 

        
           (a)                                                                            (b) 

 

Figure  7 a).  The figure depicts the table and the target on it.   The robot is shown with short black 
grippers and its field of vision is outlined by the dotted line.  Real world coordinates (x, y, ϕ ) 
specify the position and rotation angle of the robot and the perceived position of the target within the 
robot's visual field is then defined by angle θ  and distance d.  7 b). The simulated trained robot 
during the docking to the orange object on the edge of a table. 

 
4. Associator architecture for multimodal integration 

 
An overall self-organising associator architecture for multimodal integration of 
vision, action and language was designed that contains many of the features of 
the models described above (Elshaw et al. 2004, Weber et al. 2004b).   
Furthermore, the approach takes inspiration from the mirror neuron system by a 
student robot recognising and producing the behaviours of a teacher.  In our 
approach a student robot learns from a teacher robot how to perform three 
separate behaviours ‘pick’, ‘lift’ and ‘go’ based on multimodal inputs. These 
behaviours were selected as they are typical ones that a robot has to perform and 
are complex in that the same visual input would require different actions based 
on the language instruction.   

First, a robot simulator was produced with a teacher robot performing ‘go’, 
‘pick’ and ‘lift’ actions continuously in an environment (Figure 8).  The student 
robot observed the teacher robot performing the behaviours and was trained by 
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receiving multimodal inputs.  These multimodal inputs were the higher-level 
visual inputs of the x and y coordinates and the rotation angle ϕ  of the teacher 
robot, the motor directives of the robot and the language instruction.   
 

 
 
Figure 8.  The simulated environment containing the robot.  The x, y and ϕ  coordinates of the robot 
are taken with respect to the nearest wall.  Dashed lines indicate the borders of areas “belonging” to 
a wall.  The area belonging to the top wall is depicted in light grey. 
 

The simulated teacher robot performs the three behaviours in reoccurring 
loops and in the following order: the behaviour represented by the word ‘go’ 
involves moving around the environment until it reaches a wall and then turns 
away from the wall at a set angle.  It switches to the docking behaviour outlined 
above represented by the word ‘pick’ if it comes close to the target at the top of 
the arena.  The final behaviour follows the behaviour represented by the word 
‘lift’ involving moving backward to leave the table and then turning around to 
face toward the middle of the arena.  When receiving the multimodal inputs, the 
student robot was required to learn these behaviours so that it could recognise 
them in the future or perform them based on a language instruction.   

The imitation model (Figure 9) used an associator network based on the 
Helmholtz machine approach (Hinton et al. 1995). The Helmholtz machine 
generates representations of data using unsupervised learning. Bottom-up 
weights  generate a hidden representation buW rr  of some input data . 
Conversely, top-down weights 

zr
buW z~  reconstruct an approximation of the 

data  from the hidden representation.  zr
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Figure 9. The associator model for robot imitation learning.  A stimulus example is shown near each 
of the three input areas.  
 

Both sets of weights are trained by the unsupervised wake-sleep algorithm 
which uses the local delta rule. In the wake phase, a full data point zr  is 
presented which consists of the full motor, language and higher-level visual 
components.  The linear hidden representation zWr bu rr

=  is obtained from 
which a competitive version cr

r
 is obtained by taking the winning unit of r

r
 

(given by the strongest active unit) and assigning activation values under a 
Gaussian envelope to the units around the winner.  Thus, cr

r
 is effectively a 

smoothed localist code.  The reconstruction of the data is obtained by 
ctd rwz v

=~ and the top-down weights from units j to units i  are modified 
according to 
 

)~( ii
c
j

td
ij zzrw −=∆ η  (3) 

 
with an empirically determined learning rate 001.0=η . The learning rate 

was increased 5-fold whenever the active motor unit of the teacher changed.  
 
In the sleep phase, a random hidden code srv  is produced by assigning 

activation values under a Gaussian envelope centred on a random position on 
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the hidden layer.  Its linear input representation stds rWr
rv

=  is obtained, and 
then the reconstructed hidden representation sbus zWr r

=~  is obtained from 
which a competitive version cr~  is obtained by assigning activation values 
under a Gaussian envelope centred around the winner.  All weights  and 

 were rectified to be non-negative at every learning step and the bottom-up 
weights  of each hidden unit were normalised to unit length.   

tdW
buW

buW
The hidden layer of the associator network in Figure 9 that acted as the 

student robot's cortex had 16 by 48 units. In the wake phases of training it 
received multimodal inputs zr  based on observing the actions of the teacher 
robot performing the three behaviours. 

These inputs included first the higher-level vision which represents the x and 
y coordinates and rotation angle ϕ  of the teacher robot.  The x, y and ϕ  
coordinates in the environment were represented by two arrays of 36 units and 
one array of 24 units, respectively. For a close distance of the robot to the 
nearest wall, the x position was a Gaussian of activation centred near the first 
unit while for a robot position near the middle of the arena the Gaussian was 
centred near the last unit of the first column of 36 units.  The next column of 36 
units represented the y coordinates so that a Gaussian centred near the middle 
unit represented the robot to be in the centre of the environment along the y 
axis.  Rotation angles ϕ  from -180  to 180  were represented along 24 units 
with the Gaussian centred on the centre unit if 

o o

ϕ  = 0 . o

The bottom-up weights from units i  to units j  are modified according to 
 

c
j

s
i

bu
ji

bu
ij rzww ~ )( −=∈∆  (4) 

 
with an empirically determined learning rate 01.0=ε . 
 
For the language region representations of phonemes were presented. This 

approach used a phoneme representation consisting of 20 phonetic features, 
which produced a different binary activation pattern in the language input 
region 

 
              g @ U                                      p I k                                          l I f t 
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Figure 10. The phonemes and the corresponding 4 x 20-dimensional vectors representing ‘go’, ‘pick’ 
and ‘lift’.  
 
for each phoneme. A region of 4 rows by 20 columns was used to represent the 
words with the first row representing the first phoneme and the second row the 
second phoneme etc., so that the order in which they appear in the word is 
maintained (Figure 10). 

As final part of the multimodal inputs the teacher robot motor directives 
were presented on the 4 motor units (forward, backward, turn right and turn left) 
one for each of the possible actions with only one active at a time. The 
activation values in all three input areas were between 0 and 1. 

During training the student robot received all the inputs, however when 
testing, either the language area for recognition or the motor inputs for 
production were omitted. Recognition was verified by comparing the units 
which are activated on the language area via  (Figure 9) with the activation 
pattern belonging to the verbal description of the corresponding behaviour.  For 
action production the robot continuously received its own current x, y and 

tdW

ϕ  
coordinates and the language instruction of the behaviour to be performed.  
Without motor input it had to produce the appropriate motor activations via 

 which it had learnt from observing the teacher to produce the required 
behaviour. 

tdW

The associator model based robot recognised the ‘go’-,  ‘pick’- and the ‘lift’ 
behaviour, while the teacher robot was looping between the three behaviours as 
done during training. For testing the recognition of a behaviour, the teacher 
robot was placed at random start positions and performed a corresponding 
action. Furthermore, the trained student robot could successfully recreate a 
behaviour based on a language input as can be seen from Figure 11.   

 
 

‘go’                                      ‘pick’                                   ‘lift’ 

 
 
Figure 11  The simulated trained student robot performance when positioned at the same point in the 
environment but instructed with different language input.  
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The robot’s ability to both recognise an observed behaviour and perform 

the behaviour that it has learnt by imitating a teacher shows the model was able 
to recreate some concepts of the mirror neuron system.  The student robot 
produces similar regional unit activation patterns when observing the behaviour 
and performing it, as seen in Figure 12.   In doing so it combined features of the 
individual models outlined in this paper to achieve the grounding of language 
and visual information in action in a multimodal approach. 
 
                          ‘go’                               ‘pick’                               ‘lift’ 

 
 

 
 
Figure 12.  Hidden layer activations for the associator network summed up during short phases while 
the student robot a) correctly recognises the behaviours and b) performs them based on a language 
instruction.  
 

a) 

b) 

6. Discussion 
 
First, learning was done in simulation, then the trained models were transferred 
to the robot, where the performance of the docking has also been demonstrated. 
The lower-level vision network (Wm and Wc in Figure 6) was trained with “real” 
natural images, i.e. small patches randomly cut out from a set of colour images 
depicting natural scenes. We have used simulation primarily to ease the 
generation of data material for training but then transferred the simulation to a 
real robot environment. The “what”-“where” association network (Wlat in Figure 
6) was trained supervised and therefore requires controlled conditions. We have 
used a simple orange coloured disc, pasted into a natural image to denote the 
target object during learning. During performance, the network localises real 
orange fruit sufficiently robustly. The actor-critic network (Wm and Wc in Figure 
6) was trained with a simulator. Due to the robustness of the docking (if the 
robot should turn left, then it should do so in a large area), the learnt weights can 
also control the real robot. Actor-critic learning advances relatively quickly, and 
reasonable performance is achieved after a few successful trials of the simulated 
agent. Therefore, learning using real hardware is also realistic. Finally, the 
performance of the associator architecture for multimodal integration (all 
weights in Figure 9) increases slowly compared to the actor-critic network. 
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While it requires this useful control algorithm to be already present, it can 
perform learning whenever the robot is active. 
 
 
 
7. Conclusion 
 
By combining various neuroscience inspired models for a biomimetic learning 
in a mirror neuron-based robot we have produced robot behaviours based on 
visual object localization, language grounding and docking action.    The 
associator architecture was able to combine multimodal inputs of vision, 
language and motor in order to recognise and produce three behaviours.  In 
doing so we have been able to reproduce an important property of the mirror 
neuron system and action verb processing.  In conclusion we believe mirror-
neuron based learning holds a lot of potential for learning robots in the future. 
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